Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>
Answer: through energy carriers, ATP and NADPH
Explanation:in the light dependent stage,energy from a light photon is used to create ATP through ADP and an inorganic phosphate.
It does this by the transfer of energetic electron from one electron carrier to another.NADPH is also formed.
In the light independent reaction,ATP and NADP are used to reduce carbon dioxide to 3-phosphoglycerate
Answer: any answer choices
Explanation:
Answer:
Quantity A is weight and Quantity B is mass
Explanation: weight has same unit as force. Mass is the quantity of matter present in a body or object
Answer:
Explanation:
The usefulness of a buffer is its ability to resist changes in pH when small quantities of base or acid are added to it. This ability is the consequence of having both the conjugate base and the weak acid present in solution which will consume the added base or acid.
This capacity is lost if the ratio of the concentration of conjugate base to the concentration of weak acid differ by an order of magnitude. Since buffers having ratios differing by more will have their pH driven by either the weak acid or its conjugate base .
From the Henderson-Hasselbach equation we have that
pH = pKa + log [A⁻]/[HA]
thus
0.1 ≤ [A⁻]/[HA] ≤ 10
Therefore the log of this range is -1 to 1, and the pH will have a useful range of within +/- 1 the pKa of the buffer.
Now we are equipped to answer our question:
pH range = 3.9 +/- 1 = 2.9 through 4.9