Should be scientific theory
Answer:
400
Explanation:
We divide time (4.5 hours) and speed (1800 miles)
1800÷45=400
Answer:
(a) 6.283 Wb (b) 69.11 Wb (c) I = 0.628 A
Explanation:
Given that,
The diameter of the loop, d = 40 cm
Radius, r = 20 cm
Initial magnetic field, B = 5 mT
Final magnetic field, B' = 55 mT
Initial magnetic flux,

Final magnetic flux,

Due to change in magnetic field an emf will be generated in the loop. It is given by :

Let I be the current in the loop. We can find it using Ohm's law such that,

Hence, this is the required solution.
Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.