Answer:
To create a second harmonic the rope must vibrate at the frequency of 3 Hz
Explanation:
First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,
f₁ = v/2L
where,
v = speed of wave = 36 m/s
L = Length of rope = 12 m
f₁ = fundamental frequency
Therefore,
f₁ = (36 m/s)/2(12 m)
f₁ = 1.5 Hz
Now the frequency of nth harmonic is given in general, as:
fn = nf₁
where,
fn = frequency of nth harmonic
n = No. of Harmonic = 2
f₁ = fundamental frequency = 1.5 Hz
Therefore,
f₂ = (2)(1.5 Hz)
<u>f₂ = 3 Hz</u>
Answer:
I think it's 250
Explanation:
If the car is traveling 50 km/hr that means every hour, the car drives 50 km. So if you want to know how far it will go in 5 hours you do 50x5.
Answer:
The distance travelled on the freeway is 149.5 miles.
Explanation:
The school bus travels on the freeway at constant speed. According to the statement, we need to calculate the distance travelled by the vehicle by means of the following formula:
(1)
Where:
- Traveled distance, in miles.
- Speed, in miles per hour.
- Time, in hours.
If we know that
and
, then the distance travelled by the school bus is:



The distance travelled on the freeway is 149.5 miles.
Answer: 0.790 g/cm3
Explanation:
The density of acetone is 790 Kg/m3.
To convert from Kg to g we multiply by 1000 (1 Kg = 1000 g)
To convert from m3 to cm3 we multiply by 10∧6
So, The density of acetone in (g/cm3) = (790 x 1000) / (10∧6) = 0.79 g/cm3