This aint even a question
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m
Answer:
7.0 s, 69 m/s
Explanation:
If we take down to be positive, then the time to reach the ground is:
x = x₀ + v₀ t + ½ at²
240 m = (0 m) + (0 m/s) t + ½ (9.8 m/s²) t²
t = 7.0 seconds
The final velocity is:
v² = v₀² + 2a(x - x₀)
v² = (0 m/s)² + 2(9.8 m/s²) (240 m - 0 m)
v = 69 m/s
By definition, the density of an object is given by:

Where,
M: mass of the object
V: volume of the object
Since the mass and volume of an object are numerical values greater than zero, then it follows that:

It is important to respect the units of each measure.
For this case we can use the grams for the mass and cubic centimeters for the volume.
Answer:
A possible value for density is given by:

Answer:
d. the same within the uncertainty of each measurement method
Explanation:
The density of an object and in general any physical property, has the same value regardless of the method used to measure it, either directly or indirectly. Since two completely different valid methods are used, the results must be the same, taking into account the level of precision of each of the methods.