The answer to this question is:
C-"That moving clocks run slower"
Your Welcome :)
Absolutely. A little bullet can have more kinetic energy than both of them. KE depends on the mass of the object AND the SQUARE of its speed.
Answer:
Explanation:
We shall write the velocities given in vector form to make the solution easy.
The velocity of water with respect to earth that is waV(e) makes 30 degree with north or 60 degree with east so in vector form
waV(e) = 2.2 cos 60 i + 2.2 sin 60 j
waV(e) = 1.1 i + 1.9 j
Similarly , velocity of wind with respect to earth that is wiV(e) , is making 50 degree with west or - ve of x axes so we cal write it in vector form as follows
wiV(e) = - 4.5 cos 50 i - 4.5 sin 50 j
wiV(e) = - 2.89 i - 3.45 j
Now we have to calculate velocity of wind with respect to water that is
wiVwa
wiV( wa) = wiV ( e)+ eV(wa)
= wiV( e)- waV(e)
- 2.89 i - 3.45 j - 1.1 i - 1.9 j
= - 3.99 i - 5.35 j
Magnitude of this relative velocity
D² = 3.99² + 5.35²
d = 6.67 m /s
The equivalent resistance when two resistors are connected in series is
the sum of their individual resistances.
The marking on the resistor that says "1000 W" is the rating that tells
how much power the resistor can safely dissipate, without overheating
or exploding. (The 'W' stands for 'Watts'.) It doesn't tell us anything about
their individual resistances. So we don't have enough information to calculate
their series equivalent.