Answer:
Explanation:
Impulse = change in momentum
Initial momentum = mass x initial velocity = 100 x 5 = 500 kg m/s
final momentum = mass x final velocity = 100 x - 4 = -400 ( - ve sign due to reversal of direction )
change in momentum = final momentum - initial momentum
= - 400 - 500 = - 900 kg m/s .
As it is - ve , it acts upwards .
So magnitude of impulse on Perter = 900 kg m/s
Answer:
northen henisphere,southern hemisphere, Eastern hemisphere, Western hemisphere.
Answer:
) the uniform disk has a lower moment of inertia and arrives first.
Explanation:
(a) the uniform disk has a lower moment of inertia and arrives first.
(b) Let's say the disk has mass m and radius r, and
the hoop has mass M and radius R.
disk: initial E = PE = mgh
I = ½mr², so KE = ½mv² + ½Iω² = ½mv² + ½(½mr²)(v/r)² = (3/4)mv² = mgh
m cancels, leaving v² = 4gh / 3
hoop: initial E = Mgh
I = MR², so KE = ½MV² + ½(MR²)(V/R)² = MV² = Mgh
M cancels, leaving V² = gh
Vdisk = √(4gh/3) > Vhoop = √(gh)
Answer:
1.686 m
Explanation:
From coulomb's law,
F = kq1q2/r² ...................................... Equation 1
Where F = electrostatic force between the two charges, q1 = first charge, q2 = second charge, r = distance between the charges.
making r the subject of the equation,
r = √(kq1q2/F).......................... Equation 2
Given: F = 5.05 N, q1 = 28.0 μC = 28×10⁻⁶ C, q2 = 57.0 μC = 57.0×10⁻⁶ C
Constant: k = 9.0×10⁹ Nm²/C².
Substituting into equation 2
r = √(9.0×10⁹×28×10⁻⁶×57.0×10⁻⁶/5.05)
r = √(14364×10⁻³/5.05)
r = √(14.364/5.05)
r = √2.844
r = 1.686 m
r = 1.686 m.
Thus the distance must be 1.686 m