Answer:
<em>The primary coil has 13,400 turns</em>
Explanation:
<u>Voltage Transformers</u>
A transformer is an electrical apparatus that converts an alternating electrical voltage to another. Step-down transformers lower the voltage from higher levels (kilovolts) to consumer levels (120/240 Volts).
The ratio between both voltages can be computed as

Where V1 is the primary voltage and V2 is the secondary voltage. This ratio depends on the turns ratio of the coils wounded in a common magnetic core.

Being N1 the number of turns of the coils of the primary side and N2 the number of turns in the secondary coil. Both relations give us

Solving for N1

We have:

Calculate N1

The primary coil has 13,400 turns
Answer:
0.2943 Nm
Explanation:
Work done is given a the product of force and diatance moved and expressed by the formula
W=Fd
Here W represent work, F is applied force and d is perpendicular distance
Also, we know that F=mg where m is the mass of an object and g is acceleration due to gravity. Substituting this back into the initial equation then
W=mgd
Taking acceleration due to gravity as 9.81 m/s2 and substituting mass with 0.1 kg and distance with 0.3 m then
W=0.1*9.81*0.3=0.2943 Nm
The absence of external forces will make the pucks move in the form of a uniform circular motion.
<h3>What is a circular motion?</h3>
It should be noted that a circular motion simply means the movement of an object along the circumference of the circle.
In this case, the absence of external forces will make the pucks move in the form of a uniform circular motion.
If the friction is absent, the pucks will continue to move on the same path due to the first law of Newton and the law of conversation of energy. In this case,the results will match the predictions until there's loss in energy.
Learn more about circular motion on:
brainly.com/question/106339
Answer:
244mm
Explanation:
I₁ = 3.35A
I₂ = 6.99A
μ₀ = 4π*10^-7
force per unit length (F/L) = 6.03*10⁻⁵N/m
B = (μ₀ I₁ I₂ )/ 2πr .........equation i
B = F / L ..........equation ii
equating equation i & ii,
F / L = (μ₀ I₁ I₂ )/ 2πr
Note F/L = B = F
F = (μ₀ I₁ I₂ ) / 2πr
2πr*F = (μ₀ I₁ I₂ )
r = (μ₀ I₁ I₂ ) / 2πF
r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵
r = 1.4713*10⁻⁵ / 6.03*10⁻⁵
r = 0.244m = 244mm
The distance between the wires is 244m