You didn't mention it, but the trumpeter herself has to be standing still.
<span>Person C, the one running towards the trumpeter, hears a pitch
that is higher than B-flat. (A)
Person B, the one running away from the trumpeter, hears a pitch
that is lower than B-flat.
Person D, the one standing still the whole time, hears the B-flat.</span>
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
Increase .... decrease .... presumably it's the "best shape" for a body which has been formed by the gravitational force
Answer:
(A). The speed of the ions is 
(B). The radius of curvature of a singly charged lithium ion is 
Explanation:
Given that,
Electric field = 60000 N/C
Magnetic field = 0.0500 T
(A). We need to calculate the velocity
For no deflection





(B). We need to calculate the radius
Using magnetic force balance by centripetal force


Put the value into the formula


Hence, (A). The speed of the ions is 
(B). The radius of curvature of a singly charged lithium ion is 