1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadya [2.5K]
3 years ago
12

What is the charge value of 45 electrons

Physics
1 answer:
tamaranim1 [39]3 years ago
8 0

Answer:

7.2\times 10^{-18}C

Explanation:

-Let x be the charge of 45 electrons

-An electron has a relatively law mas.

-Using the law of proportions, the charge value of 45 electrons is calculated as:

1e=1.6 \times 10^{-19} coulomb\\45e=x\\\\x=\frac{45\times1.6 \times 10^{-19} coulomb}{1e}\\\\x=7.2\times 10^{-18}C

Hence, the electron charge of 45 electrons is 7.2\times 10^{-18}C

You might be interested in
Spring #1 has a force constant of k, and spring #2 has a force constant of 2k. Both springs are attached to the ceiling. Identic
Gre4nikov [31]

Answer:

The ratio of the energy stored by spring #1 to that stored by spring #2 is 2:1

Explanation:

Let the weight that is hooked to two springs be w.

Spring#1:

Force constant= k

let x1 be the extension in spring#1

Therefore by balancing the forces, we get

Spring force= weight

⇒k·x1=w

⇒x1=w/k

Energy stored in a spring is given by \frac{1}{2}kx^{2} where k is the force constant and x is the extension in spring.

Therefore Energy stored in spring#1 is, \frac{1}{2}k(x1)^{2}

                                                              ⇒\frac{1}{2}k(\frac{w}{k})^{2}

                                                              ⇒\frac{w^{2}}{2k}

Spring #2:

Force constant= 2k

let x2 be the extension in spring#2

Therefore by balancing the forces, we get

Spring force= weight

⇒2k·x2=w

⇒x2=w/2k

Therefore Energy stored in spring#2 is, \frac{1}{2}2k(x2)^{2}

                                                              ⇒\frac{1}{2}2k(\frac{w}{2k})^{2}

                                                              ⇒\frac{w^{2}}{4k}

∴The ratio of the energy stored by spring #1 to that stored by spring #2 is \frac{\frac{w^{2}}{2k}}{\frac{w^{2}}{4k}}=2:1

4 0
3 years ago
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
A 0.500 kg rock is whirled in a vertical circle of a radius 0.60 m . the velocity of the rock at the bottom of the swing is 4.0
OLEGan [10]

Explanation:

Centripetal acceleration is:

a = v² / r

a = (4.0 m/s)² / 0.60 m

a = 26.6 m/s²

7 0
3 years ago
One difference between a solar flare and a CME is that a solar flare is composed of ___________, while a CME is composed of ____
JulsSmile [24]

Answer:

magnetic energy (proton) and magnetic plasma.

Explanation:

  • The solar fare consists of bright light that occurs in various wavelengths and is observed at the surface.
  • They are not as strong as compared to the coronal mass ejection or CME. The solar fares consist of 10²² joules, while the plasma is ejected from the solar corona and can be clearly seen from a distance.
  • The Solar flares represent an atmospheric disturbance and plasms are the medium for the growth and development of solar flare and lead to solar activity.
6 0
2 years ago
A mass of 8 kg moves at a rate of 14.3 m/sec. what is the KE developed by the mass?
Lynna [10]
Kinetic energy is the energy associated with the motion of an object. It's a scalar quantity, there is no direction associated with KE and it has no components. KE =  \frac{mv ^{2} }{2} =  \frac{8 *14.3 ^{2} }{2} = 4 *204.49 = 817.96J. Therefore Kinetic energy is 817.96J.
6 0
2 years ago
Other questions:
  • Can someone explain subshell/electron configuration to me?
    14·1 answer
  • A car traveling at 26 m/s starts to decelerate steadily. It comes to a complete stop in 6 seconds. What is its acceleration?
    12·1 answer
  • Describe how we can use scientific knowledge and reasoning to help guide us when making decisions
    12·1 answer
  • A positive charge means:
    14·2 answers
  • Why mercury is preferred over alcohol in thermometer
    9·1 answer
  • A concrete highway is built of slabs 12 m long (20°C). How wide should the expansion cracks between the slabs be (at 20°C) to pr
    13·1 answer
  • The shaft of radius c is subjected to a distributed torque t, measured as torque/unit length of shaft. Shaft A B of length L, fi
    5·1 answer
  • a sensor light installed on the edge of a home can detect motion for a distance of 50 feet in front and with a range of motion o
    13·1 answer
  • I don't understand how to even begin to solve this, can someone help?
    14·1 answer
  • How is the oxygen level of blood related to its color?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!