Answer:
You are not showing the question, but I believe the answer is cis-3,4-dimethyl-3-hexene.
Explanation:
since the substituents are on same side, it call cis. Followed by the name.
Incorrect, temperature is directly proportional to the avg. KE of a gas.
<u>Answer:</u> The volume of stock solution needed is 90 mL
<u>Explanation:</u>
To calculate the molarity of the diluted solution, we use the equation:

where,
are the molarity and volume of the stock sulfuric acid solution
are the molarity and volume of diluted sulfuric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of stock solution needed is 90 mL
The half-life in months of a radioactive element that reduce to 5.00% of its initial mass in 500.0 years is approximately 1389 months
To solve this question, we'll begin by calculating the number of half-lives that has elapsed. This can be obtained as follow:
Amount remaining (N) = 5%
Original amount (N₀) = 100%
<h3>Number of half-lives (n) =?</h3>
N₀ × 2ⁿ = N
5 × 2ⁿ = 100
2ⁿ = 100/5
2ⁿ = 20
Take the log of both side
Log 2ⁿ = log 20
nlog 2 = log 20
Divide both side by log 2
n = log 20 / log 2
<h3>n = 4.32</h3>
Thus, 4.32 half-lives gas elapsed.
Finally, we shall determine the half-life of the element. This can be obtained as follow.
Number of half-lives (n) = 4.32
Time (t) = 500 years
<h3>Half-life (t½) =? </h3>
t½ = t / n
t½ = 500 / 4.32
t½ = 115.74 years
Multiply by 12 to express in months
t½ = 115.74 × 12
<h3>t½ ≈ 1389 months </h3>
Therefore, the half-life of the radioactive element in months is approximately 1389 months
Learn more: brainly.com/question/24868345
Answer : The change in internal energy is, 900 Joules.
Solution : Given,
Heat given to the system = +1400 J
Work done by the system = -500 J
Change in internal energy is equal to the sum of heat energy and work done.
Formula used :

where,
= change in internal energy
q = heat energy
w = work done
As per question, heat is added to the system that means, q is positive and work done by the system that means, w is negative.
Now put all the given values in the above formula, we get

Therefore, the change in internal energy is 900 J.
The change in internal energy depends on the heat energy and work done. As we will change in the heat energy and work done, then changes will occur in the internal energy. Hence, the energy is conserved.