Answer:
A turbine converts the potential and kinetic energy of a moving fluid (liquid or gas) to mechanical energy. In a turbine generator, a moving fluid—such as water, steam, combustion gases, or air—pushes a series of blades mounted on a shaft, which rotates the shaft connected to a generator
Explanation:
A common method of producing electricity is from generators with an electromagnet—a magnet produced by electricity—not a traditional magnet. The generator has a series of insulated coils of wire that form a stationary cylinder. This cylinder surrounds a rotary electromagnetic shaft. When the electromagnetic shaft rotates, it induces a small electric current in each section of the wire coil. Each section of the wire coil becomes a small, separate electric conductor. The small currents of the individual sections combine to form one large current. This current is the electricity that moves through power lines from generators to consumers.
Diagram of an electricity generator - Spinning rotor turning coiled copper wire inside stationary magnets to generate electricity.
Electric generator
Most of U.S. electricity generation is from electric power plants that use a turbine or similar machine to drive electricity generators.
A turbine converts the potential and kinetic energy of a moving fluid (liquid or gas) to mechanical energy. In a turbine generator, a moving fluid—such as water, steam, combustion gases, or air—pushes a series of blades mounted on a shaft, which rotates the shaft connected to a generator. The generator, in turn, converts the mechanical energy to electrical energy based on the relationship between magnetism and electricity.