but tpla ybut tpla y but tpl but tpla y but tpla y but tpla ya y but tpla y but tpla y
At the phase of D. Exhaust Stroke, the waste gases are removed during a four stroke engine. It is one of the phases of the four stroke engine. The cylinder from the fuel ignited during the compression step and removed from the cylinder.
Answer:
Average force, F = 286.72 N
Explanation:
Given that,
Mass of the baseball, m = 140 g = 0.14 kg
Speed of the ball, v = 32 m/s
Distance, h = 25 cm = 0.25 m
We need to find the average force exerted by the ball on the glove. It is solved using the conservation of energy as :

F = mg



F = 286.72 N
So, the average
force exerted by the ball on the glove is 286.72 N. Hence, this is the required solution.
Explanation:
The given data is as follows.
Mass, m = 75 g
Velocity, v = 600 m/s
As no external force is acting on the system in the horizontal line of motion. So, the equation will be as follows.
where,
= mass of the projectile
= mass of block
v = velocity after the impact
Now, putting the given values into the above formula as follows.
![75(10^{-3}) \times 600 = [(75 \times 10^{-3}) + 50] \times v](https://tex.z-dn.net/?f=75%2810%5E%7B-3%7D%29%20%5Ctimes%20600%20%3D%20%5B%2875%20%5Ctimes%2010%5E%7B-3%7D%29%20%2B%2050%5D%20%5Ctimes%20v)
= 
v = 0.898 m/s
Now, equation for energy is as follows.
E = 
= 
= 13500 J
Now, energy after the impact will be as follows.
E' = ^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B75%20%5Ctimes%2010%5E%7B-3%7D%20%2B%2050%5D%280.9%29%5E%7B2%7D)
= 20.19 J
Therefore, energy lost will be calculated as follows.
= E E'
= (13500 - 20) J
= 13480 J
And, n = 
= 
= 99.85
= 99.9%
Thus, we can conclude that percentage n of the original system energy E is 99.9%.
<span>PV / T = C</span>
As the pressure goes up, the temperature also goes up, and vice-versa.
<span>Also same as before, initial and final volumes and temperatures under constant pressure can be calculated.</span>