To solve this problem it is necessary to apply the concepts related to the law of Malus which describe the intensity of light passing through a polarizer. Mathematically this law can be described as:

Where,
Indicates the intensity of the light before passing through the polarizer
I = Resulting intensity
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light
From the law of Malus when the light passes at a vertical angle through the first polarizer its intensity is reduced by half therefore

In the case of the second polarizer the angle is directly 60 degrees therefore



In the case of the third polarizer, the angle is reflected on the perpendicular, therefore, its angle of index would be

Then,



Then the intensity at the end of the polarized lenses will be equivalent to 0.09375 of the initial intensity.
Answer:
A) t = 0.55 s
B) x = 24.8 m
Explanation:
A) We can find the time at which the ball will be in the air using the following equation:
Where:
is the final height= 0
is the initial height= 1.5 m
is the component of the initial speed in the vertical direction = 0 m/s
t: is the time =?
g: is the gravity = 9.81 m/s²

By solving the above equation for t we have:
Hence, the ball will stay 0.55 seconds in the air.
B) We can find the distance traveled by the ball as follows:

Where:
a: is the acceleration in the horizontal direction = 0
is the final position =?
is the initial position = 0
is the component of the initial speed in the horizontal direction = 45 m/s


Therefore, the ball will travel 24.8 meters.
I hope it helps you!
In order to persuade the electrons in the wire to flow, you need
a potential difference between the ends of the wire. Then the
electrons will want to get away from the more-negative end and
go to the more-positive end. If both ends of the wire are at the
same potential, then the electrons have no reason to go anywhere,
and they just stay where they are.
Choice-d says this.
I beileve the answer is B