1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bekas [8.4K]
3 years ago
9

A 75-g projectile traveling at 600 m /s strikes and becomes embedded in the 40-kg block, which is ini-tially stationary. Compute

the energy lost during the impact. Express your answer as an absolute value ΔE| and as a percentage n of the original system energy E.
Physics
2 answers:
yawa3891 [41]3 years ago
8 0

Answer:

Explanation:

Answer:

Explanation:

m1 = 75 g = 0.075 kg

m2 = 40 kg

u1 = 600 m/s

u2 = 0

Let the velocity of combined mass is v.

Use conservation of momentum

m1 x u1 + m2 x u2 = ( m1 + m2) x v

0.075 x 600 + 0 = ( 40 + 0.075) x v

v = 1.12 m/s

Initial energy, E = 0.5 x 0.075 x 600 x 600 = 13500 J

Final energy, E' = 0.5 x 40.075 x 1.12 x 1.12 = 25.14 J

Loss in energy, ΔE = E - E' = 13500 - 25.14 = 13474.86 J

% loss of energy = ( 13474.86 x 100) / 13500 = 99.8 %  

levacccp [35]3 years ago
7 0

Explanation:

The given data is as follows.

          Mass, m = 75 g

         Velocity, v = 600 m/s

As no external force is acting on the system in the horizontal line of motion. So, the equation will be as follows.

          m_{1}v_{1_{i}} = (m_{1} + m_{2})vi

where,  m_{1} = mass of the projectile

            m_{2} = mass of block

              v = velocity after the impact

Now, putting the given values into the above formula as follows.

              m_{1}v_{1_{i}} = (m_{1} + m_{2})vi

         75(10^{-3}) \times 600 = [(75 \times 10^{-3}) + 50] \times v

                                  = \frac{45}{50.075}

                              v = 0.898 m/s

Now, equation for energy is as follows.

               E = \frac{1}{2}mv^{2}

                  = \frac{1}{2} \times (75 \times 10^{-3} + 50) \times (600)^{2}

                  = 13500 J

Now, energy after the impact will be as follows.

             E' = \frac{1}{2}[75 \times 10^{-3} + 50](0.9)^{2}

                 = 20.19 J

Therefore, energy lost will be calculated as follows.

           \Delta E = E  E'

                       = (13500 - 20) J

                       = 13480 J

And,   n = \frac{\Delta E}{E}

             = \frac{13480}{13500} \times 100

             = 99.85

             = 99.9%

Thus, we can conclude that percentage n of the original system energy E is 99.9%.

You might be interested in
A 0.3-kg object connected to a light spring with a force constant of 19.3 N/m oscillates on a frictionless horizontal surface. A
Ghella [55]

The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is

<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J

That is,

• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point

• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium

so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.

By the work-energy theorem,

<em>W</em> = ∆<em>K</em> = <em>K</em>

where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So

<em>W</em> = 1/2 <em>mv</em> ²

where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get

<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s

8 0
3 years ago
A 1980-kg car is traveling with a speed of 15.5 m/s. What is the magnitude of the horizontal net force that is required to bring
Dennis_Churaev [7]

Answer: 6067.5 N

Explanation:

Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.

Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.

5 0
2 years ago
What is the unit of self inductance?
stira [4]

Answer:

The correct answer to that question is HENRY

6 0
3 years ago
The shock absorbers in a car act as a
Varvara68 [4.7K]

Answer: it's 69200

Explanation:

I gotchu guys

8 0
3 years ago
Which name is given to the type of friction that an objects falling through the air experience
andrey2020 [161]
It is called Air resistance
3 0
3 years ago
Other questions:
  • ________ is a force acting through distance.
    8·1 answer
  • I need help with this one
    8·1 answer
  • Please write a detailed explanation of Earth’s magnetic declination and explain how this has changed over time. (25 points)
    6·2 answers
  • The area of the bar over r = 2 is 0.234. what is the area of the bar over r = 4?
    5·1 answer
  • A circuit in which two or more paths are connected to the voltage source
    5·1 answer
  • The foot of a ladder is 6m away from a wall. if the top of the ladder rest 8 feet up on the wall,how long is the ladder?
    5·1 answer
  • A nano-satellite has the shape of a disk of radius 0.80 m and mass 8.50 kg.
    12·1 answer
  • I will mark brainliest! :D<br> SO please help me M8
    5·2 answers
  • When air resistance balances the weight of an object that is falling, the velocity _____.
    10·1 answer
  • Explain why fish survive under water when the surface is already frozen​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!