1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bekas [8.4K]
3 years ago
9

A 75-g projectile traveling at 600 m /s strikes and becomes embedded in the 40-kg block, which is ini-tially stationary. Compute

the energy lost during the impact. Express your answer as an absolute value ΔE| and as a percentage n of the original system energy E.
Physics
2 answers:
yawa3891 [41]3 years ago
8 0

Answer:

Explanation:

Answer:

Explanation:

m1 = 75 g = 0.075 kg

m2 = 40 kg

u1 = 600 m/s

u2 = 0

Let the velocity of combined mass is v.

Use conservation of momentum

m1 x u1 + m2 x u2 = ( m1 + m2) x v

0.075 x 600 + 0 = ( 40 + 0.075) x v

v = 1.12 m/s

Initial energy, E = 0.5 x 0.075 x 600 x 600 = 13500 J

Final energy, E' = 0.5 x 40.075 x 1.12 x 1.12 = 25.14 J

Loss in energy, ΔE = E - E' = 13500 - 25.14 = 13474.86 J

% loss of energy = ( 13474.86 x 100) / 13500 = 99.8 %  

levacccp [35]3 years ago
7 0

Explanation:

The given data is as follows.

          Mass, m = 75 g

         Velocity, v = 600 m/s

As no external force is acting on the system in the horizontal line of motion. So, the equation will be as follows.

          m_{1}v_{1_{i}} = (m_{1} + m_{2})vi

where,  m_{1} = mass of the projectile

            m_{2} = mass of block

              v = velocity after the impact

Now, putting the given values into the above formula as follows.

              m_{1}v_{1_{i}} = (m_{1} + m_{2})vi

         75(10^{-3}) \times 600 = [(75 \times 10^{-3}) + 50] \times v

                                  = \frac{45}{50.075}

                              v = 0.898 m/s

Now, equation for energy is as follows.

               E = \frac{1}{2}mv^{2}

                  = \frac{1}{2} \times (75 \times 10^{-3} + 50) \times (600)^{2}

                  = 13500 J

Now, energy after the impact will be as follows.

             E' = \frac{1}{2}[75 \times 10^{-3} + 50](0.9)^{2}

                 = 20.19 J

Therefore, energy lost will be calculated as follows.

           \Delta E = E  E'

                       = (13500 - 20) J

                       = 13480 J

And,   n = \frac{\Delta E}{E}

             = \frac{13480}{13500} \times 100

             = 99.85

             = 99.9%

Thus, we can conclude that percentage n of the original system energy E is 99.9%.

You might be interested in
An airplane with an airspeed of 120 km/h has a heading of 30 degree east of North in a wind that is blowing toward the east at 6
lesya692 [45]

Answer:

Explanation:

Velocity of plane relative to ground V_pg = ?

Given the velocity in vector form ,

velocity of plane relative to air V_pw = 120 cos30 i + 120sin30j

V_wg = 60 i

V_pg = V_pw +V_wg

= 120 cos30 i + 120sin30j + 60i

= 164 i + 60 j

magnitude

=251 km / h

=

8 0
3 years ago
A bullet with an initial kinetic energy of 400 J strikes a wooden block where a 8000 N resistive force stops the bullet. What is
Sindrei [870]

Answer:

d = 0.05 [m] = 50 [mm]

Explanation:

We must remember the principle of conservation of energy which tells us that energy is transformed from one way to another. For this case, the initial kinetic energy is transformed into useful work that is equal to the product of force by distance.

E_{k}=F*d\\400 = 8000*d\\d = 0.05 [m] = 50 [mm]

5 0
2 years ago
PLEASE ANSWER THIS WILL MARK AS BRAINLIEST PLEASE PUT TRUE ANSWERS
SIZIF [17.4K]

Answer:

D

Explanation:

A is wrong bc best DNA will survive

B is wrong because organism adapt not only for food source but to be able to live in the environment as well

C is wrong because single celled organisms don't adapt

6 0
3 years ago
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
2 years ago
A person drives a car around a circular cloverleaf with a radius of 77 m at a uniform speed of 10 m/s. What is the acceleration
umka2103 [35]

Answer:

770m/s

Explanation:

caculation using one of the newton law of motion

6 0
2 years ago
Other questions:
  • Consider a concave mirror with a focal length of 12.60 cm. a) Find the image distance when the object distance is 12.60 cm. (Ans
    12·1 answer
  • Explain the difference between the precision and accuracy of an experiment.
    11·1 answer
  • A jet leaves a runway whose bearing is N 3232degrees°E from the control tower. After flying 77 ​miles, the jet turns 90degrees°
    12·1 answer
  • The distance between the lenses in a compound microscope is 18 cm. The focal length of the objective is 1.5 cm. If the microscop
    7·1 answer
  • I need the ans for this question QUICK PLEASE!!!
    5·1 answer
  • A horizontal force of 750 N is needed to overcome the force of static friction between a level floor and a 250-kg crate. What is
    6·1 answer
  • If a system is isolated the total energy within that system is constant. Consider the case of a hot cup of coffee: when it cools
    12·1 answer
  • How can I solve this?
    9·1 answer
  • The increase in volume of matter that occurs when matter is heated. a) Contraction b) Expansion c) kinetic energy d) Volume
    6·1 answer
  • what car experiences more impulse - one stopped by a wood block fixed in place, or one stopped by a foam noodle that is allowed
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!