1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
10

Lisa is on a trip of 2,792 miles. She has already traveled 146 miles. She has 6 days left in her trip. How many miles does she n

eed to travel each day to complete the trip?
2,646
441
587
2,205
Mathematics
1 answer:
Verizon [17]3 years ago
5 0
The answer is 441 because 2,792-146/ (divided) by6= 441
You might be interested in
(b) 5.2m + 5 = 2.9m – 3 – 4.1m
ohaa [14]

Answer:

m =-1.25

Step-by-step explanation:

5.2m + 5 = 2.9m – 3 – 4.1m

Combine like terms

5.2m + 5 = -1.2m – 3

Add 1.2m to each side

5.2m +1.2m +5 = -1.2m +1.2m -3

6.4m +5 = -3

Subtract 5 from each side

6.4m +5-5 = -3-5

6.4m = -8

Divide each side

6.4m/6.4 = -8/6.4

m =-1.25

7 0
3 years ago
Determine the lateral surface area and the total surface for the pyramid. Round your answer to the nearest whole number.
777dan777 [17]

Answer:

L = 704

S = 832

Step-by-step explanation:

Given

H = 22 --- Height

W = 8 --- Width

L=8 ---- Length

Solving (a): The lateral surface area (L)

This is calculated as:

L = 2 * (L + W) * H

This gives:

L = 2 * (8 + 8) * 22

L = 2 * 16 * 22

L = 704

Solving (b): The total surface area (T)

This is calculated as:

S = 2 * (LW + WH + LH)

This gives:

S = 2 * (8*8 + 8*22+ 8*22)

S = 2 * (64 + 176+ 176)

S = 2 * 416

S = 832

3 0
3 years ago
If DC is about 12 units, what other length(s) can you determine? Please don’t put a link as an answer.
anyanavicka [17]

Answer:

How is DC 12 units if all the sides are congruent and AB clearly states that it is 9 units long?

Doesnt make sense

5 0
3 years ago
The contrapositive of a given statement is equivalent to the original statement? True or False
bija089 [108]
True, for a contrapositive you switch the parts and then make them opposite, but the statement is still true.
4 0
3 years ago
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Divide the combinations.<br><br> 60C3 / 15C3
    12·2 answers
  • An object is 9.6 cm long what is the length in inches
    7·1 answer
  • Tell whether the triangle is a right triangle. Explain.
    7·1 answer
  • Determines whether the line through the points
    10·1 answer
  • 9 - 3 ( 5 - 4 x ) =============
    9·2 answers
  • Write a # where the value of the 4 in the thousands place is x1/10 the # 854,093
    10·1 answer
  • Experts/ace/geniuses helpp
    9·1 answer
  • 3/4(1/4x+8)-(1/2x+2)=3/8(4-x)-1/4x
    8·1 answer
  • The following triangles are similar. What would be the length of ON?
    6·1 answer
  • Please help me with this.<br> (t+2) + (t-3)=9<br> Transform to standard equation form ax^2+bx+c=0
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!