1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mars1129 [50]
4 years ago
13

A coal-fired power plant is burning bituminous coal that has an energy content of 12,000 Btu/lb. The power plant is burning the

coal at a rate of 110 lb/s. The efficiency of the powerplant is 33%, which means that 67% of the total energy from the coal is lost as waste heat.
a. A new heat exchanger is installed that is capable of using 0.12% of the waste heat to heat an air stream for use in another process in the plant. The air enters the heat exchanger at a volumetric flow rate of 2,000 acfm at 298 K and 1 atm. Assuming the heat exchanger is 90% efficient (i.e., 90% of the heat supplied to the heat exchanger is transferred to the air stream), at what temperature will the air leave the heat exchanger, assuming an exit pressure of 1 atm? Use an average specific heat of 0.244 Btu/lb-°R.
b. What will be the volumetric flow rate of the gas leaving the heat exchanger (in units of acfm)?
c. If the air exiting the heat exchanger has a moisture content of 12% (v/v), what is the moisture-corrected dry flow rate (in units of dry standard cubic meters per minute) at STP (1 atm, 298 K)?
Engineering
1 answer:
dybincka [34]4 years ago
3 0

Answer:

a) T_{out} = 2190.455 ^{\textdegree}R b) \dot V_{air,out} = 8352.941 acfm  c) \dot V_{air,out,corr} = 7350.588 afcm

Explanation:

a) The heat lost by the power plant is:

\dot Q_{loss} = (0.67) \cdot (110 \frac{lbm}{s} ) \cdot (12000 \frac{BTU}{lbm} )\\\dot Q_{loss} = 884400 BTU

The waste heat used by heat exchanger is:

\dot Q_{used} = (0.0012) \cdot \dot Q_{loss}\\\dot Q_{used} = 1061.28 BTU

Assuming that air behaves as an ideal gas, density is given by following expression:

\rho_{air} = \frac{P \cdot M_{air}}{R_{u} \cdot T}

\rho_{air} = \frac{(101.325 kPa) \cdot (28 \frac{kg}{kmol})}{(8.314 \frac{kPa\cdot m^{3}}{kmol \cdot K} )(298 K)}\\\rho_{air} = 1.145 \frac{kg}{m^{3}}

The density unit is converted to pounds per cubic feet:

\rho_{air} = 1.145 \frac{kg}{m^{3}} \cdot (\frac{1 lb}{0.453 kg}) \cdot (\frac{0.304 m}{1 ft} )^{3} \\\rho_{air} = 0.071 \frac{lb}{ft^{3}}

The heat received by air flow through heat exchanger is:

\dot Q_{air} = (0.90) \cdot \dot Q_{used}\\\dot Q_{air} = 955.152 BTU

Outlet temperature can isolated from the following formula:

\dot Q_{air} = \rho_{air} \cdot \dot V_{air} \cdot c_{p,air} \cdot (T_{out} - T_{in})

T_{out} =T_{in} + \frac{\dot Q_{air}}{\rho_{air} \cdot \dot V_{air} \cdot c_{p,air}}

T_{out} = 536.4 ^{\textdegree}R + \frac{955.152 BTU}{(0.071\frac{lb}{ft^{3}})\cdot (33.333 \frac{ft}{s} )\cdot(0.244 \frac{BTU}{lb ^{\textdegree}R})}\\T_{out} = 2190.455 ^{\textdegree}R

b) Due to the compressibility of air, density has to be calculated by using the approach from section a).

\rho_{air,out} = \frac{(101.325 kPa) \cdot (28 \frac{kg}{kmol})}{(8.314 \frac{kPa\cdot m^{3}}{kmol \cdot K} )(1217 K)}\\\rho_{air,out} = 0.280 \frac{kg}{m^{3}}

\rho_{air,out} = 0.017 \frac{lb}{ft^{3}}

Volumetric flow can be found by Principle of Mass Conservation:

\dot V_{air, out} = \frac{\rho_{air}}{\rho_{air,out}}\cdot \dot V_{air}

\dot V_{air,out} = 8352.941 acfm

c) The moisture component indicates that 88 percent of volume is occupied by dry-air. The moisture-corrected dry flow rate is:

\dot V_{air,out,corr} = 0.88 \cdot (8352.941 afcm)\\\dot V_{air,out,corr} = 7350.588 afcm

You might be interested in
Fully developed conditions are known to exist for water flowing through a 25-mm-diameter tube at 0.01 kg/s and 27 C. What is the
Irina18 [472]

Answer:

0.0406 m/s

Explanation:

Given:

Diameter of the tube, D = 25 mm = 0.025 m

cross-sectional area of the tube = (π/4)D² = (π/4)(0.025)² = 4.9 × 10⁻⁴ m²

Mass flow rate = 0.01 kg/s

Now,

the mass flow rate is given as:

mass flow rate = ρAV

where,

ρ is the density of the water = 1000 kg/m³

A is the area of cross-section of the pipe

V is the average velocity through the pipe

thus,

0.01 = 1000 × 4.9 × 10⁻⁴ × V

or

V = 0.0203 m/s

also,

Reynold's number, Re = \frac{VD}{\nu}

where,

ν is the kinematic viscosity of the water = 0.833 × 10⁻⁶ m²/s

thus,

Re = \frac{0.0203\times0.025}{0.833\times10^{-6}}

or

Re = 611.39 < 2000

thus,

the flow is laminar

hence,

the maximum velocity =  2 × average velocity = 2 × 0.0203 m/s

or

maximum velocity = 0.0406 m/s

5 0
3 years ago
Advantage of a sheave wheel in a shaft headgear<br>​
NikAS [45]

Answer:

sorry if wrong

Explanation:

One sheave means that you are using a single drum winder. They are the worst! Double drum winders control easier, brake better and are much more efficient. They save time ( two skips or cages) and can be clutched to perform faster shift transport. A single drum is slow, unbalanced and can be a nightmare if it trips out during hoisting. If the brake system is not perfect it can be a real hairy experience. For a runaway single drum, there is no counterbalance effect. It always runs to destruction. With a double drum, the driver still has a chance to control the winder to a certain extent and he has two sets of brakes to rely on. A single sheave could also mean a shaft with a single compartment. No second means of escape unless there are ladders or stairways. Not a very healthy situation.

Those are just a few points. I am sure much more can be said in favor of a double drum winder and two or more sheaves in the headgear. Most of the shafts I have worked at have multiple winders and up to ten compartments. They all have a small single drum service winder for emergencies and moves of personnel during shift times. They are referred to as the Mary - Annes. Apparently, the name originated in the U.K. where an aristocratic mine owner named the first such winder after his mistress.

5 0
3 years ago
Suppose a large amount of power is required. Which engine would you choose between Otto and Diesel? Why?
Firdavs [7]

Answer:

Otto engine

Explanation:

As we know that

Power = Torque x speed

So we can say that when speed of engine then power of engine also will increases.

The speed of Otto engine is more as compare to Diesel engine so the power of Otto engine is more.But on the other hand torque of Diesel engine is more as compare to Otto engine but the speed is low so the product of speed and torque is more for Otto engine .It means that when requires large amount of power then Otto engine should be use.

6 0
4 years ago
Which of the following behaviors should be avoided? Check all of the boxes that apply.
Ahat [919]

Answer:

c,d,e

Explanation:

rude, so you can keep safe and so you can really learn

7 0
3 years ago
Read 2 more answers
Refrigerant 134a is the working fluid in a vaporcompression heat pump that provides 35 kW to heat a dwelling on a day when the o
Dennis_Churaev [7]

Answer:

Hello, dear.

For the answer please see the explanation below.

Explanation:

The compressor power is:

2.212kW

(b) The refrigeration capacity is:

3.62 tons

(c) The coefficient of performance is:

5.75

5 0
3 years ago
Other questions:
  • Draw a flowchart to represent the logic of a program that allows the user to enter values for the current year and the user’s bi
    14·1 answer
  • Where are the ar manufacturers not fitting the engine in the high end sport cars
    5·1 answer
  • Investigating how slime molds reproduce is an example of applied research.<br> True<br> False
    11·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • PLEASE HELP ME RIGHT NOW!!
    11·1 answer
  • Find all the words, Figure out my puzzle!
    14·2 answers
  • the tire restraining device or barrier shall be removed immediately from service for any of these defects except
    15·1 answer
  • Jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
    12·2 answers
  • X cotx expansion using maclaurins theorem.
    11·1 answer
  • The corner store sells candy in ₵20, ₵30 and ₵50 packages. List all the ways in which the Candyman
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!