1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mars1129 [50]
3 years ago
13

A coal-fired power plant is burning bituminous coal that has an energy content of 12,000 Btu/lb. The power plant is burning the

coal at a rate of 110 lb/s. The efficiency of the powerplant is 33%, which means that 67% of the total energy from the coal is lost as waste heat.
a. A new heat exchanger is installed that is capable of using 0.12% of the waste heat to heat an air stream for use in another process in the plant. The air enters the heat exchanger at a volumetric flow rate of 2,000 acfm at 298 K and 1 atm. Assuming the heat exchanger is 90% efficient (i.e., 90% of the heat supplied to the heat exchanger is transferred to the air stream), at what temperature will the air leave the heat exchanger, assuming an exit pressure of 1 atm? Use an average specific heat of 0.244 Btu/lb-°R.
b. What will be the volumetric flow rate of the gas leaving the heat exchanger (in units of acfm)?
c. If the air exiting the heat exchanger has a moisture content of 12% (v/v), what is the moisture-corrected dry flow rate (in units of dry standard cubic meters per minute) at STP (1 atm, 298 K)?
Engineering
1 answer:
dybincka [34]3 years ago
3 0

Answer:

a) T_{out} = 2190.455 ^{\textdegree}R b) \dot V_{air,out} = 8352.941 acfm  c) \dot V_{air,out,corr} = 7350.588 afcm

Explanation:

a) The heat lost by the power plant is:

\dot Q_{loss} = (0.67) \cdot (110 \frac{lbm}{s} ) \cdot (12000 \frac{BTU}{lbm} )\\\dot Q_{loss} = 884400 BTU

The waste heat used by heat exchanger is:

\dot Q_{used} = (0.0012) \cdot \dot Q_{loss}\\\dot Q_{used} = 1061.28 BTU

Assuming that air behaves as an ideal gas, density is given by following expression:

\rho_{air} = \frac{P \cdot M_{air}}{R_{u} \cdot T}

\rho_{air} = \frac{(101.325 kPa) \cdot (28 \frac{kg}{kmol})}{(8.314 \frac{kPa\cdot m^{3}}{kmol \cdot K} )(298 K)}\\\rho_{air} = 1.145 \frac{kg}{m^{3}}

The density unit is converted to pounds per cubic feet:

\rho_{air} = 1.145 \frac{kg}{m^{3}} \cdot (\frac{1 lb}{0.453 kg}) \cdot (\frac{0.304 m}{1 ft} )^{3} \\\rho_{air} = 0.071 \frac{lb}{ft^{3}}

The heat received by air flow through heat exchanger is:

\dot Q_{air} = (0.90) \cdot \dot Q_{used}\\\dot Q_{air} = 955.152 BTU

Outlet temperature can isolated from the following formula:

\dot Q_{air} = \rho_{air} \cdot \dot V_{air} \cdot c_{p,air} \cdot (T_{out} - T_{in})

T_{out} =T_{in} + \frac{\dot Q_{air}}{\rho_{air} \cdot \dot V_{air} \cdot c_{p,air}}

T_{out} = 536.4 ^{\textdegree}R + \frac{955.152 BTU}{(0.071\frac{lb}{ft^{3}})\cdot (33.333 \frac{ft}{s} )\cdot(0.244 \frac{BTU}{lb ^{\textdegree}R})}\\T_{out} = 2190.455 ^{\textdegree}R

b) Due to the compressibility of air, density has to be calculated by using the approach from section a).

\rho_{air,out} = \frac{(101.325 kPa) \cdot (28 \frac{kg}{kmol})}{(8.314 \frac{kPa\cdot m^{3}}{kmol \cdot K} )(1217 K)}\\\rho_{air,out} = 0.280 \frac{kg}{m^{3}}

\rho_{air,out} = 0.017 \frac{lb}{ft^{3}}

Volumetric flow can be found by Principle of Mass Conservation:

\dot V_{air, out} = \frac{\rho_{air}}{\rho_{air,out}}\cdot \dot V_{air}

\dot V_{air,out} = 8352.941 acfm

c) The moisture component indicates that 88 percent of volume is occupied by dry-air. The moisture-corrected dry flow rate is:

\dot V_{air,out,corr} = 0.88 \cdot (8352.941 afcm)\\\dot V_{air,out,corr} = 7350.588 afcm

You might be interested in
A furnace wall composed of 200 mm, of fire brick. 120 mm common brick 50mm 80% magnesia and 3mm of steel plate on the outside. I
Liula [17]

Answer:

  • fire brick / common brick : 1218 °C
  • common brick / magnesia : 1019 °C
  • magnesia / steel : 90.06 °C
  • heat loss: 4644 kJ/m^2/h

Explanation:

The thermal resistance (R) of a layer of thickness d given in °C·m²·h/kJ is ...

  R = d/k

so the thermal resistances of the layers of furnace wall are ...

  R₁ = 0.200/4 = 0.05 °C·m²·h/kJ

  R₂ = 0.120 2.8 = 3/70 °C·m²·h/kJ

  R₃ = 0.05/0.25 = 0.2 °C·m²·h/kJ

  R₄ = 0.003/240 = 1.25×10⁻⁵ °C·m²·h/kJ

So, the total thermal resistance is ...

  R₁ +R₂ +R₃ +R₄ = R ≈ 0.29286 °C·m²·h/kJ

__

The rate of heat loss is ΔT/R = (1450 -90)/0.29286 = 4643.70 kJ/(m²·h)

__

The temperature drops across the various layers will be found by multiplying this heat rate by the thermal resistance for the layer:

  fire brick: (4543.79 kJ/(m²·h))(0.05 °C·m²·h/kJ) = 232 °C

so, the fire brick interface temperature at the common brick is ...

  1450 -232 = 1218 °C

For the next layers, the interface temperatures are ...

  common brick to magnesia = 1218 °C - (3/70)(4643.7) = 1019 °C

  magnesia to steel = 1019 °C -0.2(4643.7) = 90.06 °C

_____

<em>Comment on temperatures</em>

Most temperatures are rounded to the nearest degree. We wanted to show the small temperature drop across the steel plate, so we showed the inside boundary temperature to enough digits to give the idea of the magnitude of that.

5 0
3 years ago
A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 60
Rzqust [24]

Answer:

flow(m) = 7.941 lbm/s

Q_in = 90.5184 Btu/lbm

Q_out = 56.01856 Btu/lbm

Explanation:

Given:

- T_1 = 60 F = 520 R

- T_6 = 940 = 1400 R

- Heat ratio for air k = 1.4

- Compression ratio r = 3

- W_net,out = 1000 hp

Find:

mass flow rate of the air

rates of heat addition and rejection

Solution:

- Using ideal gas relation compute T_2, T_4, T_10:

                     T_2 = T_1 * r^(k-1/k)

                     T_2 = T_4 = T_10 = 520*3^(.4/1.4) = 711.744 R

- Using ideal gas relation compute T_7, T_5, T_9:

                     T_7 = T_6 * r^(-k-1/k)

                     T_7 = T_5 = T_9 = 1400*3^(-.4/1.4) = 1022.84 R

- The mass flow rate is obtained by:

                     flow(m) = W_net,out / 2*c_p*(1400-1022.84-711.744+520)

                     flow(m) = 1000*.7068 / 2*0.24*(1400-1022.84-711.744+520)

                     flow(m) = 7.941 lbm/s

- The heat input is as follows:

                     Q_in = c_p*(T_6 - T_5)

                     Q_in = 0.24*(1400 - 1022.84)

                     Q_in = 90.5184 Btu/lbm

- The heat output is as follows:

                     Q_out = c_p*(T_10 - T_1)

                     Q_out = 0.24*(711.744 - 520)

                    Q_out = 56.01856 Btu/lbm

                                           

                     

5 0
3 years ago
Help I need to know if it’s true or false
e-lub [12.9K]

Answer:  False

explanation: for a bloodborne pathogen to spread you would have to have an open wound as well as the blood would have to get in it.

3 0
3 years ago
Calculate the current in the 8-W resistor of Figure below by using Thevenin’s theorem. What will be its value of connections of
kvv77 [185]

solution from c hegg. hope it helps. see photos explanation

7 0
3 years ago
Inspections may be_____ or limited to a specific area such as electrical or plumbing
Nuetrik [128]
A is the answer for the sentence
4 0
3 years ago
Other questions:
  • The future of work is characterised by choose all that apply
    11·1 answer
  • The pistons of a V-6 automobile engine develop 226.5 hp. If the engine driveshaft rotational speed is 4700 RPM and the torque is
    14·1 answer
  • When it comes to making a good impression in a work setting, it does not apply to an initial contact, since both people are meet
    9·1 answer
  • How many kg / day of NaOH must be added to neutralize a waste stream generated by an industry producing 90,800 kg / day of sulfu
    6·2 answers
  • A saturated 1.5 ft3 clay sample has a natural water content of 25%, shrinkage limit (SL) of 12% and a specific gravity (GS) of 2
    11·1 answer
  • A 200-mm-long strip of metal is stretched in two steps, first to 300 mm and then to 400 mm. Show that the total true strain is t
    15·1 answer
  • You are a planning aide on a team and are given the assignment of researching the historical significance and original blueprint
    5·1 answer
  • A hemispherical shell with an external diameter of 500 mm and a thickness of 20 mm is going to be made by casting, located entir
    12·1 answer
  • Most goals
    12·1 answer
  • Task Three :Write a C++ program to read temperature
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!