Answer: you can watch a video on how to solve this question on you tube
Answer:
If the heat engine operates for one hour:
a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.
b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.
In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.
Explanation:
The Carnot efficiency is obtained as:

Where
is the atmospheric temperature and
is the maximum burn temperature.
For the case (B), the efficiency we will use is:

The work done by the engine can be calculated as:
where Hv is the heat value.
If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.

If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.

Answer:
The main difference between the bs2 and bs3 engine is to present in the catalytic converter. And in bs2 engines the catalytic converter is does not used for the formation of hc and co. In bs3 engine there is no harmful emissions in the hc and co
Answer:
I can help but I need to know what it looking for
Answer:
prove that | S | = | E | ; every element of S there is an Image on E , while not every element on E has an image on S
Explanation:
Given that S = { p q |p, q are prime numbers greater than 0}
E = {0, −2, 2, −4, 4, −6, 6, · · · }
To prove by constructing a bijection from S to E
detailed solution attached below
After the bijection :
<em>prove that | S | = | E |</em> : every element of S there is an Image on E , while not every element on E has an image on S
∴ we can say sets E and S are infinite sets