Answer:
Explanation:
Call the bike on the right A
Call the bike on the left B
The car begins it's time when it passes A
4 minutes later, it passes B.
But B has moved in 4 minutes and that is the key to the problem.
How far has B moved.
t = 4 minutes = 4/60 hours = 1/15 of an hour.
d = ?
rate = 30 km / hr
d = r * t
d = 30 km/hr * 1/15 hours = 2 km
The distance between the bikes is 5 km.
So the car has traveled 5 - 2 = 3 km
d = 3 km
r = ?
t = 4 minutes = 1/15 hour
r = d/t = 3/(1/15)= 3 / 0.066666666 = 45 km/hr.
Gauss law states that the electric flux through any closed
surface is proportional to the net electric charge inside the surface. This is
expressed mathematically in the form of:
Φ = Q / εo
Where,
Φ = the electric flux = unknown (which we have to find for)
Q = the net electric charge = 5.0 µC = 5 E-6 C
εo = the permittivity of free space = a constant value =
8.85 E-12 C^2 / N m^2
Plugging in the values
into the equation will result in:
Φ = 5 E-6
C / (8.85 E-12 C^2 / N m^2)
Φ = 564,971.75 Wb = <span>5.6 x
10^5 Wb </span>
Statement three i do believe
Answer:
The jumper is in freefall for 12.447 seconds.
Explanation:
Let's start by calculating how far the jumper falls.
Initial height (on cliff) = 910 m
Final height after freefall = 150 m
Distance the jumper falls in freefall = 910 - 150 = 760 m
We can now use the equation of motion below to solve for the time:

here. acceleration = 9.81 m/s (due to gravity)
initial speed (u) = 0 m/s (because vertical speed is 0 at the start)
and distance (s) = 760 meters (as calculated above)
So for speed we get:


t = 12.447 seconds
The net force on the bike and the rider is 120 N
Explanation:
We can solve this problem by applying Newton's second law of motion, which states that:
F = ma
where
F is the net force exerted on an object
m is the mass of the object
a is its acceleration
For the bike and the rider in this problem, we have
m = 60 kg is their combined mass
is their acceleration
Therefore, the net force on them is

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly