Tere would be too many so there would be more fighting. Thye could overpopulate the world and destroy our stuff for example if it is a pig they can easily destory crops. We would all have to go hunting. There would also be less food so that is why they would start going out and destroying stuff.
The kinetic energy of an object of mass m moving with speed v is given by:

For the bicycle in our problem,

and

, so the kinetic energy is
Answer:
126.99115 g
Explanation:
50 g at 90 cm
Stick balances at 61.3 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)

The mass of the meter stick is 126.99115 g
<span>The moment of inertia of the large sphere will be twice that of the smaller sphere.
The formula for the moment of inertia for a solid sphere is:
I = (2/5)mr^2
where
I = moment of inertia
m = mass
r = radius
Since both spheres have the same diameter, they also have the same radius, so the only change is their mass. And the moment of inertia is directly proportional to their mass as shown by the above formula. So the sphere with twice the mass will have twice the moment of inertia, or 2 times.</span>
Answer:
Alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.
Explanation:
Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.