1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
3 years ago
6

An object is formed by attaching a uniform, thin rod with a mass of mr = 6.9 kg and length L = 4.88 m to a uniform sphere with m

ass ms = 34.5 kg and radius R = 1.22 m. Note ms = 5mr and L = 4R.
1)

What is the moment of inertia of the object about an axis at the left end of the rod?

kg-m2

2)

If the object is fixed at the left end of the rod, what is the angular acceleration if a force F = 476 N is exerted perpendicular to the rod at the center of the rod?
Physics
1 answer:
Bumek [7]3 years ago
4 0

Answer:

a)  total moment of inertia is 1359.05 kg m^2

b) angular acceleratio is 0.854rad/sec^2

Explanation:

Given data:

m1=6.9 kg

L=4.88 m

m2=34.5 kg

R=1.22 m

we klnow that moment of inertia for rod is given as

J1=(1/12) ×m×L^2

J1 = (1/12) \times 6.9 \times 4.88^2 = 13.693 kg m^2

moment of inertia for sphere is given as

J1=(2/5) ×m×r^2

J1 = (2/5) \times 34.5 \times 1.22^2 = 20.539 kg m^2

As object rotates around free end of rod then for sphere the axis around what it rotates is at a distance of d2=L+R

For rod distance is  d1=0.5*L

By Steiner theorem

for the rod we get J_1'=J_1 + m_1\times d_1^2

J_1' = 13.693 + 2.44^2\times 6.9 = 54.77 kg m^2

for the sphere we get J_2' = J_2 + m_2\times d_2^2

J2' = 20.539 + 34.5\times 6.1^2 = 1304.28 kg^m2

And the total moment of inertia for the first case is

J_{t1} = J_1'+J_2' = 54.77 + 1304.28 = 1359.05kg.m^2

b) F=476 N

The torque for system is given as

M = F\times d\times sin(a)

where a is angle between Force and distance d

and where d represent distance from rotating axis.

In this case a = 90 degree  

M = F\times L/2

M=476*2.44 = 1161.44 Nm

The acceleration is calculated as

a_1 = \frac{M}{J_{t1}}

      = \frac{1161.44}{1359.05}

      = 0.854 rad/sec^2

You might be interested in
Why won’t anyone help me please anybody help me I really need help .
irga5000 [103]

Answer:

1➡️ this is the method of decomposition

2➡️ H2 and O2

3➡️ b

sorry if I am wrong

8 0
2 years ago
A cannon with a muzzle speed of 1 000 m/s is used to start an avalanche on a mountain slope. The target is 2 000 m from the cann
Nataliya [291]

Answer:

∅ = 89.44°

Explanation:

In situations like this air resistance are usually been neglected thereby making g= 9.81 m/s^{2}

Bring out the given parameters from the question:

Initial Velocity (V_{1}) = 1000 m/s

Target distance (d) = 2000 m

Target height (h) =  800 m

Projection angle ∅ = ?

Horizontal distance = V_{1x}tcos ∅     .......................... Equation 1

where V_{1x} = velocity in the X - direction

           t = Time taken

Vertical Distance = y = V_{1y} t - \frac{1}{2}gt^{2}        ................... Equation 2

Where   V_{1y} = Velocity in the Y- direction

              t  = Time taken

V_{1y} = V_{1}sin∅

Making time (t) subject of the formula in Equation 1

                    t = d/(V_{1x}cos ∅)

                      t = \frac{2000}{1000coso} = \frac{2}{cos0}  =    \frac{d}{cos o}             ...................Equation 3

substituting equation 3 into equation 2

Vertical Distance = d = V_{1y} \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

                                  Vertical Distance = h = sin∅ \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Vertical Distance = h = dtan∅   - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Applying geometry

                              \frac{1}{cos o} = tan^{2} o + 1

  Vertical Distance = h = d tan∅   - 2 g (tan^{2} o + 1)

               substituting the given parameters

               800 = 2000 tan ∅ - 2 (9.81)( tan^{2} o + 1)

              800 = 2000 tan ∅ - 19.6( tan^{2} o + 1)  Equation 4

Replacing tan ∅ = Q     .....................Equation 5

In order to get a quadratic equation that can be easily solve.

            800 = 2000 Q - 19.6Q^{2} + 19.6

Rearranging 19.6Q^{2} - 2000 Q + 780.4 = 0

                    Q_{1} = 101.6291

                      Q_{2} = 0.411

    Inserting the value of Q Into Equation 5

                 tan ∅ = 101.63    or tan ∅ = 0.4114

Taking the Tan inverse of each value of Q

                  ∅ = 89.44°     ∅ = 22.37°

             

4 0
2 years ago
As the sun sets on the horizon, its rays are ____________ by the ocean water. A) absorbed B) diffracted C) reflected D) refracte
nevsk [136]

C: reflected

because the sun shines on the water when u look into the water u can see the sun

6 0
2 years ago
The slope of a good speed Time indicates ?
11Alexandr11 [23.1K]

The answer would be acceleration.

8 0
2 years ago
The change of energy from one type to another; for example, kinetic to potential, or kinetic
Elena L [17]

Answer:Broadly speaking, all energy in the universe can be categorized as either potential energy or kinetic energy. Potential energy is the energy associated with position, like a ball held up in the air. When you let go of that ball and let it fall, the potential energy converts into kinetic energy, or the energy associated with motion.

EXAMPLES: There are five types of kinetic energy: radiant, thermal, sound, electrical and mechanical. Let's explore several kinetic energy examples to better illustrate these various forms.

3 0
3 years ago
Other questions:
  • The state of illinois cycle rider safety program requires motorcycle riders to be able to brake from 30 mph (44 feet/second) to
    5·1 answer
  • Solving 2-D Motion
    10·2 answers
  • What kind of mouse is a battery-powered mouse that uses radio waves or bluetooth technology to communicate with a device?
    7·1 answer
  • What is the angle of reflection?
    14·1 answer
  • The objects listed are placed at the top of a ramp and roll down to the bottom without slipping. Assuming that there is no air r
    7·1 answer
  • 11. A 3.8 kg object is lifted 12 meters. Approximately how much work is performed during the lifting?
    7·1 answer
  • What is the kinetic energy of a 150gram object moving at a velocity of 100m/s?
    14·1 answer
  • Which of these is not a part of the<br> cardiovascular system?
    10·2 answers
  • This table shows the mass and volume of four different objects.
    13·2 answers
  • A physicist hangs a 150-g object on a spring whose spring constant is a value of 13.22 Newtons/meter and has a spring force of 2
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!