Answer:
The metabolic power for starting flight=134.8W/kg
Explanation:
We are given that
Mass of starling, m=89 g=89/1000=0.089 kg
1 kg=1000 g
Power, P=12 W
Speed, v=11 m/s
We have to find the metabolic power for starting flight.
We know that
Metabolic power for starting flight=
Using the formula
Metabolic power for starting flight=
Metabolic power for starting flight=134.8W/kg
Hence, the metabolic power for starting flight=134.8W/kg
Initial velocity (u) = 2 m/s
Acceleration (a) = 10 m/s^2
Time taken (t) = 4 s
Let the final velocity be v.
By using the equation,
v = u + at, we get
or, v = 2 + 10 × 4
or, v = 2 + 40
or, v = 42
The final velocity is 42 m/s.
Electrons are a stable sub atomic particle that has a negative charge and is found in all atoms and is the main carrier of electricity through solids.
In a metal, some of the electrons can escape from the atoms and are free to move around inside the metal. These electrons are referred to as 'conduction electrons'.
<span>A current is a flow of charge. In metal a current is the flow of the conduction electrons through the metal. This can occur when connected to battery for example: The battery pumps the conduction electrons around the circuit. </span>
Answer:
<h2>104 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 26 × 4
We have the final answer as
<h3>104 N</h3>
Hope this helps you
Answer:
The correct answer is "4.26 m".
Explanation:
Given:
Wavelength,

or,

Distance,

or,

Distance between the 1st and 2nd dark fringes,
As we know,
⇒ 
or,
⇒ 
By substituting the values, we get



