The hydropower plant and wind turbines both uses kinetic energy to produce mechanical power and convert the mechanical energy using a generator to an electrical energy. They both have the process to produce energy but they differ in the source the hydropower plant uses water to whit the wind turbines power plant uses wind. Therefore the answer is letter B.
Answer:
D) The ball exerts a force on the wall and the wall exerts a force back.
Explanation:
Newton's third law of motion states that:
"When an object A exerts a force on another object B, then object B exerts an equal and opposite force on object A"
In this problem, we can identify (for instance) object A with tha ball and object B with the wall. Therefore, if we apply Newton's third law, we get:
The ball (object A) exerts a force on the wall (object B), therefore the wall (object B) exerts an equal and opposite force on the ball (object A). So, option D is the correct one.
The linear speed of the pepperoni is 0.628 m/s. Its direction is tangential to the circle.
We know that;
v = rω
r = radius of the piece = 10 cm or 0.1 m
ω = angular velocity
We have to convert 60 revolutions per minute to radians per second
1 rev/min = 0.10472 rad/s
60 revolutions per minute = 60 rev/min × 0.10472 rad/s/1 rev/min
= 6.28 rad/s
v = 0.1 m × 6.28 rad/s
v = 0.628 m/s
The direction of this velocity is tangential to the circle.
Learn more: brainly.com/question/4612545
Answer:
The first part can be solved via conservation of energy.

For the second part,
the free body diagram of the car should be as follows:
- weight in the downwards direction
- normal force of the track to the car in the downwards direction
The total force should be equal to the centripetal force by Newton's Second Law.

where
because we are looking for the case where the car loses contact.

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

Explanation:
The point that might confuse you in this question is the direction of the normal force at the top of the loop.
We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.