Answer:
17.6 N
Explanation:
The force exerted by the punter on the football is equal to the rate of change of momentum of the football:
![F=\frac{\Delta p}{\Delta t}](https://tex.z-dn.net/?f=F%3D%5Cfrac%7B%5CDelta%20p%7D%7B%5CDelta%20t%7D)
where
is the change in momentum of the football
is the time elapsed
The change in momentum can be written as
![\Delta p = m(v-u)](https://tex.z-dn.net/?f=%5CDelta%20p%20%3D%20m%28v-u%29)
where
m = 0.55 kg is the mass of the football
u = 0 is the initial velocity (the ball starts from rest)
v = 8.0 m/s is the final velocity
Combining the two equations and substituting the values, we find the force exerted on the ball:
![F=\frac{m(v-u)}{\Delta t}=\frac{(0.55)(8.0-0)}{0.25}=17.6 N](https://tex.z-dn.net/?f=F%3D%5Cfrac%7Bm%28v-u%29%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B%280.55%29%288.0-0%29%7D%7B0.25%7D%3D17.6%20N)
Answer:
K = 373.13 N/m
Explanation:
The force of the spring is equals to:
Fe - m*g = 0 => Fe = m*g
Using Hook's law:
K*X = m*g Solving for K:
K = m/X * g
In this equation, m/X is the inverse of the given slope. So, using this value we can calculate the spring's constant:
K = 10 / 0.0268 = 373.13N/m
<span>The sport originated in Victorian England, where it was played among the upper-class as an after-dinner parlour game.</span><span>
</span>
Answer: Main sequence stars fuse hydrogen atoms to form helium atoms in their cores. About 90 percent of the stars in the universe, including the sun, are main sequence stars. These stars can range from about a tenth of the mass of the sun to up to 200 times as massive.