The direction is the same as the direction the ball is moving in. Because of the rolling of the ball, the direction of movement of the surface of the ball is opposite the overall direction of the ball. Since friction will oppose the direction of movement of the surface of the ball, it is in the same direction as the net direction of movement of the ball.
Answer:
It is 52° below the celestial equator.
Explanation:
The declination is the angle in degrees measured north (+) or south (-) of the an imaginary line called the celestial equator.
The celestial equator is a projection of the earth's equator on the celestial sphere. imaginary
The star named Canopus has a declination of approximately –52°.
Since the angle is negative, this shows that it is south or below the celestial equator and at 52° south of the celestial equator.
Thus, the star named Caponus is 52° below the celestial equator.
Answer:
L/2
Explanation:
Neglect any air or other resistant, for the ball can wrap its string around the bar, it must rotate a full circle around the bar. This means the ball should be able to swing to the top position where it's directly above the bar. By the law of energy conservation, this happens when the ball is at the same level as where it's previously released vertically. It means the swinging radius around the bar must be at least half of the string length.
So the distance d between the bar and the pivot should be at least L/2
A=f/m
A=900/425
A=2.18
To determine acceleration you divide the force by the mass.
Answer:
carbon dioxide (CO2)
Explanation:
the burning or combustion of these fossil fuels creates gases that are released into the atmosphere. Of these gases, carbon dioxide (CO2) is the most common and is the gas most responsible for exacerbating the green- house effect that is changing global climate patterns.