Mass of CO₂ produced : 58.67 g
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction
CS₂ + 3O₂ -------> CO₂ + 2SO₂
mol of CO₂ based on mol of O₂ as a limiting reactant(CS₂ as an excess reactant)
From the equation, mol ratio of mol CO₂ : mol O₂ = 1 : 3, so mol CO₂ :

mass CO₂ (MW= 44 g/mol) :

Answer is A-photosystem II
the balanced equation for the formation of ammonia is
N₂ + 3H₂ ---> 2NH₃
molar ratio of N₂ to NH₃ is 1:2
mass of N₂ reacted is 8.0 g
therefore number of N₂ moles reacted is - 8.0 g / 28 g/mol = 0.286 mol
according to the molar ratio,
1 mol of N₂ will react to give 2 mol of NH₃, assuming nitrogen is the limiting reactant
therefore 0.286 mol of N₂ should give - 2 x 0.286 mol = 0.572 mol of NH₃
therefore mass of NH₃ formed is - 0.572 mol x 17 g/mol = 9.72 g
a mass of 9.72 mol of NH₃ is formed
Answer:
9.79740949850 moles
Explanation:
- 1 mole = Avogardo's Number <<6.022 E 23 <<particles, atoms, etc.>>
- This problem can be solved using dimensional analysis by multiplying atoms (5.9E24 atoms) by (1) mole and then dividing the number by Avogardo's number (6.022 E 23 atoms).
- Note: E = * 10
Side Note: Please let me know if you need any clarifications about this!
Answer:
See explanation below
Explanation:
The question is incomplete, cause you are not providing the structure. However, I found the question and it's attached in picture 1.
Now, according to this reaction and the product given, we can see that we have sustitution reaction. In the absence of sodium methoxide, the reaction it's no longer in basic medium, so the sustitution reaction that it's promoted here it's not an Sn2 reaction as part a), but instead a Sn1 reaction, and in this we can have the presence of carbocation. What happen here then?, well, the bromine leaves the molecule leaving a secondary carbocation there, but the neighbour carbon (The one in the cycle) has a more stable carbocation, so one atom of hydrogen from that carbon migrates to the carbon with the carbocation to stabilize that carbon, and the result is a tertiary carbocation. When this happens, the methanol can easily go there and form the product.
For question 6a, as it was stated before, the mechanism in that reaction is a Sn2, however, we can have conditions for an E2 reaction and form an alkene. This can be done, cause the extoxide can substract the atoms of hydrogens from either the carbon of the cycle or the terminal methyl of the molecule and will form two different products of elimination. The product formed in greater quantities will be the one where the negative charge is more stable, in this case, in the primary carbon of the methyl it's more stable there, so product 1 will be formed more (See picture 2)
For question 6b, same principle of 6a, when the hydrogen migrates to the 2nd carbocation to form a tertiary carbocation the methanol will promove an E1 reaction with the vecinal carbons and form two eliminations products. See picture 2 for mechanism of reaction.