Answer: 67 mmHg
Explanation:
According to Dalton's Gas Law, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 512 mmHg
P(oxygen) = 332 mmHg
P(carbon mono-oxide) = 113 mmHg
Remaining pressure (P3) = ?
To get P3, apply Dalton's Gas Law formula
Ptotal = P(oxygen) + P(carbon mono-oxide) + P3
512 mmHg = 332 mmHg + 113 mmHg + P3
512 mmHg = 445 mmHg + P3
P3 = 512 mmHg - 445 mmHg
P3 = 67 mmHg
Thus, the remaining pressure is 67 mmHg
Answer is: the absolute pressure of the air in the balloon is 1.015 atm (102.84 kPa).
n = 0.250 mol; amount of substance.
V = 6.23 L; volume of the balloon.
T = 35°C = 308.15 K; temperature.
R = 0.08206 L·atm/mol·K, universal gas constant.
Ideal gas law: p·V = n·R·T.
p = n·R·T / V.
p = 0.250 mol · 0.08206 L·atm/mol·K · 308.15 K / 6.23 L.
p = 1.015 atm; presure of the air.
Answer:
A pH scale reading 13 indicates a strong base.
Explanation:
From my understanding:
1 -4 is a strong acid
4 - 7 is weak acid
7 - 9 is a weak base
9 - 14 is a strong base
The answer is 23, 040 minutes. To solve this you can start by changing days in to hours. We know that there are 24 hours in a day. To find how many hours are in 16 days you multiply 24 by 16 which is 384. Next you must find out how many minutes are in 384 hours. we know there are 60 minutes per hour. To find how many minutes are in 384 hours, you multiply 384 by 60. To this you get 23, 040 which is your answer.