Answer:
Low pressure systems typically arrive with storms and clouds. Air motion is usually upwards, as heated are is less dense and more buoyant than cooler air. A high pressure system is typically cooler than its counter-part, and skies are usually clear. Low pressure systems carry more water vapor due to rising hot air cooling and condensing.
Answer:
the car with the hay should slow to 16m/s if the bale of hay is dropped into it.
Answer:
The acceleration is 1 cm/s^2.
Explanation:
The acceleration is defined as the rate of change of velocity.
Here, initial velocity, u = 3/1 = 3 cm/s
final velocity, v = 4/1 = 4 cm/s
time, t = 1 s
Let the acceleration is a.
Use first equation of motion
v = u + at
4 = 3 + 1 x a
a = 1 cm/s^2
<u>Answer:</u> The voltage needed is 35.7 V
<u>Explanation:</u>
Assuming that the resistors are arranged in parallel combination.
For the resistors arranged in parallel combination:

We are given:

Using above equation, we get:

Calculating the voltage by using Ohm's law:
.....(1)
where,
V = voltage applied
I = Current = 3.75 A
R = Resistance = 
Putting values in equation 1, we get:

Hence, the voltage needed is 35.7 V
Answer:
When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V
However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter
Explanation: