Let the rod be on the x-axes with endpoints -L/2 and L/2 and uniform charge density lambda (2.6nC/0.4m = 7.25 nC/m).
The point then lies on the y-axes at d = 0.03 m.
from symmetry, the field at that point will be ascending along the y-axes.
A charge element at position x on the rod has distance sqrt(x^2 + d^2) to the point.
Also, from the geometry, the component in the y-direction is d/sqrt(x^2+d^2) times the field strength.
All in all, the infinitesimal field strength from the charge between x and x+dx is:
dE = k lambda dx * 1/(x^2+d^2) * d/sqrt(x^2+d^2)
Therefore, upon integration,
E = k lambda d INTEGRAL{dx / (x^2 + d^2)^(3/2) } where x goes from -L/2 to L/2.
This gives:
E = k lambda L / (d sqrt((L/2)^2 + d^2) )
But lambda L = Q, the total charge on the rod, so
E = k Q / ( d * sqrt((L/2)^2 + d^2) )
Answer: the answer is B
Explanation: I just took the quiz :)
In deciding whether to use a technology, people must analyze the good effects and the bad effects of using a certain technology. People should weigh the consequences well. In deciding, it should be kept in the mind that the goal of using something should benefit people in a good way.
Answer:
The principle of conservation of energy and angular momentum
Explanation:
At point A, the car experienced maximum of potential energy
As it moves down the hill, the potential energy decreases while the kinetic energy increases.
The maximum kinetic energy of the car is needed for the attainment of enough centripetal force to help the car move through the loop without falling .
Answer:
According to studies, the milky way is approximately, "170,000–200,000 light-years (52–61 kpc) in diameter and, on average, approximately 1,000 ly (0.3 kpc) thick."
With that being said, it is safe to say that the dimensions are somewhere around 100,000 by 1,000