Answer:
C. The car from driving off the road on a curve
Explanation:
A centripetal force actually causes circular motion. This occurs when an object moves in a circular path or a circle,a force will definitely act on it.
For instance, a car travelling in a circular path must definitely experience this force acting on it, even when the car moves at a constant speed. If it does not exist the object will definitely spin off in a direction tangential to the circular path or curve.
Answer:
d = 90 ft
Explanation:
Here in each swing the distance sweeps by the swing is half of the initial distance that it will move
So here we can say that total distance in whole motion is given as

since it is half of the distance that it will move in each swing so it would be a geometric progression with common ratio of 1/2
so sum of such GP is given by the formula



a = ( v(2) - v(1) ) ÷ ( t(2) - t(1) )
2 = ( v(2) - 10 ) ÷ ( 6 - 0 )
2 × 6 = v(2) - 10
v(2) = 12 + 10
v(2) = 22 m/s
Answer:
Amplitude.
Explanation:
A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.
In Science, there are two (2) types of wave and these include;
I. Electromagnetic waves: it doesn't require a medium for its propagation and as such can travel through an empty space or vacuum. An example of an electromagnetic wave is light.
II. Mechanical waves: it requires a medium for its propagation and as such can't travel through an empty space or vacuum. An example of a mechanical wave is sound.
An amplitude can be defined as a waveform that's measured from the center line (its origin or equilibrium position) to the bottom of a trough or top of a crest.
Hence, an amplitude is a word that describes the maximum displacement a point moves from its rest position when a wave passes.
On a graph, the vertical axis (y-axis) is the amplitude of a waveform and this simply means that, it's measured vertically.
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.
The word "static" would be known to be friction as air rushing against an airplane