We will solve this question using the second law of motion which states that force is directly equal to the product of mass and acceleration.

Where,
- F is force
- m is mass
- a is acceleration
In our case,
- F = ?
- m = 2500 kg
- a = 20m/s

<em>Thus, The force of 50000 Newton is required to accelerate a car of 2500 kg...~</em>
Answer:
the ball's velocity was approximately 0.66 m/s
Explanation:
Recall that we can study the motion of the baseball rolling off the table in vertical component and horizontal component separately.
Since the velocity at which the ball was rolling is entirely in the horizontal direction, it doesn't affect the vertical motion that can therefore be studied as a free fall, where only the constant acceleration of gravity is affecting the vertical movement.
Then, considering that the ball, as it falls covers a vertical distance of 0.7 meters to the ground, we can set the equation of motion for this, and estimate the time the ball was in the air:
0.7 = (1/2) g t^2
solve for t:
t^2 = 1.4 / g
t = 0.3779 sec
which we can round to about 0.38 seconds
No we use this time in the horizontal motion, which is only determined by the ball's initial velocity (vi) as it takes off:
horizontal distance covered = vi * t
0.25 = vi * (0.38)
solve for vi:
vi = 0.25/0.38 m/s
vi = 0.65798 m/s
Then the ball's velocity was approximately 0.66 m/s
Answer:
<u>Conventions used in SI to indicate units are as follows:</u>
- Only singular form of units are used. for example: use kg and not kgs.
- Do not use full stop after the abbreviations of any unit. for example: do not use kg. or cm.
- Use one space between last numeric digit and SI unit. for example: 10 cm, 9 km.
- Symbols and words should not be mixed. for example: use Kilogram per cubic and not kilogram/m3.
- While writing numerals, only the symbols of the units should be written. for example: use 10 cm and not Ten cm.
- Units named after a scientist should be written in small letters. for example: newton, henry.
- Degree sign should not be used when the kelvin unit is used. for exmaple: use 37° and not 37°k
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have

Beta Carotene is the reason why a carrot is orange. Carotene is a color pigment that is found in large quantities in carrots and it has health benefits as well. The main health benefit of carotene is that our body converts it into vitamin A which is essential.