Answer:
The fence is 5feet less.
Explanation:
We need to determine
The less amount of fence required, if the enclosure has full width and reduced length, compared to full length and reduced width.
Approach & WorkingArea of lawn = 30 × 403/4th of the area of lawn = ¾(30 × 40) = 30 * 30
When full width will be fenced, and reduced length will be fenced.
Width = 30 feet30 * L = 30 * 30Hence, length = 30 feetLength of fence needed = 2(30 + 30) = 120 feet
When full length will be fenced, and reduced width will be fenced
Length = 40 feet40 * W = 30 * 30W = 22.5 feetLength of fence needed = 2(40 + 22.5) = 125 feet
Difference in length of fence needed = 125 – 120 = 5 feet.
The subscript after the element indicates the number of atoms of that element in the molecule. So, in H20, the subscript after the H, which stands for hydrogen, is 2. This means that there are 2 hydrogen atoms in a water molecule.
Hope this helps! :)
Option c) 1.5 V
Explanation:
<em>As the circuit is build in series first we will find the current passing through the complete circuit. Current stays the same in each element is the series cirucuit, however, the voltage is different.</em>
Voltage is given by the following formula:
V = IR
<em>Because we have to find current through whole circuit, we will first find resistance of the whole circuit.</em>
Equivalent Resistance R(eq): R1 + R2 = 60 + 60 = 120 ohm
Current passing through whole circuit be:
= 0.025
Now we will find out the voltage between C and D:
Current stays the same in series circuit: I = 0.025 c
Resistance between C and D is, R = 60 ohm
Voltage becomes, V = IR = 0.025 * 60 = 1.5 V
136lb?? I'm so confused rn!! I'm super sorry!!
Answer:
Final velocity, v = 0.28 m/s
Explanation:
Given that,
Mass of the model, 
Speed of the model, 
Mass of another model, 
Initial speed of another model, 
To find,
Final velocity
Solution,
Let V is the final velocity. As both being soft clay, they naturally stick together. It is a case of inelastic collision. Using the conservation of linear momentum to find it as :



V = 0.28 m/s
So, their final velocity is 0.28 m/s. Hence, this is the required solution.