I think you get half of the magnetic field and that means half the power of the magnetic field.
The mechanical energy of the roller coaster is sum of kinetic energy K and gravitational potential energy U:

where

is the kinetic energy

is the gravitational potential energy
Since the ride is frictionless, the total mechanical energy E is conserved during the ride. Therefore, at the top of the hill, the potential energy is maximum, because h (the height) is maximum, and this means the kinetic energy is minimum (because the sum of K and U is constant), so the velocity will be minimum. Viceversa, at the bottom of the hill, the potential energy will be minimum (because h is minimum), so the kinetic energy K will be maximum, and the velocity v of the roller coaster will be maximum.
Answer:
Explanation:
Mass of ice m = 500g = .5 kg
Heat required to raise the temperature of ice by 10 degree
= mass of ice x specific heat of ice x change in temperature
= .5 x 2093 x 10 J
10465 J
Heat required to melt the ice
= mass of ice x latent heat
0.5 x 334 x 10³ J
167000 J
Heat required to raise its temperature to 18 degree
= mass x specific heat of water x rise in temperature
= .5 x 4182 x 18
=37638 J
Total heat
=10465 +167000+ 37638
=215103 J
A good follow-through maintains flow in the motion. It is to hit 'smooth', rather than to hit 'hard'. It is to maintain a certain 'looseness' in the swing, rather than 'tension' or 'over-hitting' the ball with too much power.