Dispersion angle = 0.3875 degrees.
Width at bottom of block = 0.09297 cm
Thickness of rainbow = 0.07038 cm
Snell's law provides the formula that describes the refraction of light. It is:
n1*sin(θ1) = n2*sin(θ2)
where
n1, n2 = indexes of refraction for the different mediums
θ1, θ2 = angle of incident rays as measured from the normal to the surface.
Solving for θ2, we get
n1*sin(θ1) = n2*sin(θ2)
n1*sin(θ1)/n2 = sin(θ2)
asin(n1*sin(θ1)/n2) = θ2
The index of refraction for air is 1.00029, So let's first calculate the angles of the red and violet rays.
Red:
asin(n1*sin(θ1)/n2) = θ2
asin(1.00029*sin(40.80)/1.641) = θ2
asin(1.00029*0.653420604/1.641) = θ2
asin(0.398299876) = θ2
23.47193844 = θ2
Violet:
asin(n1*sin(θ1)/n2) = θ2
asin(1.00029*sin(40.80)/1.667) = θ2
asin(1.00029*0.653420604/1.667) = θ2
asin(0.39208764) = θ2
23.08446098 = θ2
So the dispersion angle is:
23.47193844 - 23.08446098 = 0.38747746 degrees.
Now to determine the width of the beam at the bottom of the glass block, we need to calculate the difference in the length of the opposite side of two right triangles. Both triangles will have a height of 11.6 cm and one of them will have an angle of 23.47193844 degrees, while the other will have an angle of 23.08446098 degrees. The idea trig function to use will be tangent, where
tan(θ) = X/11.6
11.6*tan(θ) = X
So for Red:
11.6*tan(θ) = X
11.6*tan(23.47193844) = X
11.6*0.434230136 = X
5.037069579 = X
And violet:
11.6*tan(θ) = X
11.6*tan(23.08446098) = X
11.6*0.426215635 = X
4.944101361 = X
So the width as measured from the bottom of the block is: 5.037069579 cm - 4.944101361 cm = 0.092968218 cm
The actual width of the beam after it exits the flint glass block will be thinner. The beam will exit at an angle of 40.80 degrees and we need to calculate the length of the sides of a 40.80/49.20/90 right triangle. If you draw the beams, you'll realize that:
cos(θ) = X/0.092968218
0.092968218*cos(θ) = X
0.092968218*cos(40.80) = X
0.092968218*0.756995056 = X
0.070376481 = X
So the distance between the red and violet rays is 0.07038 cm.
Answer:
0.0675 seconds
Explanation:
From the question,
We apply newton's second law of motion
F = m(v-u)/t.................... Equation 1
Where F = force exert by the brake, v = final speed, u = initial speed m = mass of the bicycle, t = time.
make t the subject of the equation
t = m(v-u)/F................... Equation 2
Given: m = 180 kg, u = 6.0 m/s, v = 0 m/s (comes to stop), F = -1600 N ( agianst the dirction of motion)
Substitute these value into equation 2
t = 180(0-6.0)/-1600
t = -1080/-1600
t = 0.0675 seconds.
Answer:
a. Final velocity, V = 2.179 m/s.
b. Final velocity, V = 7.071 m/s.
Explanation:
<u>Given the following data;</u>
Acceleration = 0.500m/s²
a. To find the velocity of the boat after it has traveled 4.75 m
Since it started from rest, initial velocity is equal to 0m/s.
Now, we would use the third equation of motion to find the final velocity.
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
- S represents the displacement measured in meters.
Substituting into the equation, we have;


Taking the square root, we have;

<em>Final velocity, V = 2.179 m/s.</em>
b. To find the velocity if the boat has traveled 50 m.


Taking the square root, we have;

<em>Final velocity, V = 7.071 m/s.</em>
Answer:
it creates a gas called carbon dioxide. The gas begins to expand in the bottle and starts to inflate the balloon
Explanation:
Why does this happen? well, The faster-moving particles inside the bottle start to move faster and faster and soon they expand to fill the balloon.
Answer:
For left = 0 N/C
For right = 0 N/C
At middle =
N/C
Explanation:
Given data :-
б =
C/ m²
Considering the two thin metal plates to be non conducting sheets of charges.
Electric field is given by

1) To the left of the plate
= 0 N/C.
2) To the right of them.
= 0 N/C.
3) Between them.
=
=
=
N/C