They both flow in currents. Water has a pump that works like a battery and pipes that work like a circuit.
Answer:
The BOD concentration 50 km downstream when the velocity of the river is 15 km/day is 63.5 mg/L
Explanation:
Let the initial concentration of the BOD = C₀
Concentration of BOD at any time or point = C
dC/dt = - KC
∫ dC/C = -k ∫ dt
Integrating the left hand side from C₀ to C and the right hand side from 0 to t
In (C/C₀) = -kt + b (b = constant of integration)
At t = 0, C = C₀
In 1 = 0 + b
b = 0
In (C/C₀) = - kt
(C/C₀) = e⁻ᵏᵗ
C = C₀ e⁻ᵏᵗ
C₀ = 75 mg/L
k = 0.05 /day
C = 75 e⁻⁰•⁰⁵ᵗ
So, we need the BOD concentration 50 km downstream when the velocity of the river is 15 km/day
We calculate how many days it takes the river to reach 50 km downstream
Velocity = (displacement/time)
15 = 50/t
t = 50/15 = 3.3333 days
So, we need the C that corresponds to t = 3.3333 days
C = 75 e⁻⁰•⁰⁵ᵗ
0.05 t = 0.05 × 3.333 = 0.167
C = 75 e⁻⁰•¹⁶⁷
C = 63.5 mg/L
Answer:
141 m at 65.6° N of E
Explanation:
Let E be along the positive x axis of a unit circle
N = 90°
E = 0°
SE = -45°
W = 180°
NW = 135°
east displacement
x = 140cos90 + 85cos0 + 35cos-45 + 38cos180 + 19cos135 = 58.313708... m
north displacement
y = 140sin90 + 85sin0 + 35sin-45 + 38sin180 + 19sin135 = 128.6862915... m
d = √(128.6862915² + 58.313708²) = 141.28216525... m
tanθ = 128.6862915 / 58.313708
θ = 65.622521...
During a climb UP the mountain, gravity does NO work on the climber.
Actually, it's more correct to say that gravity does NEGATIVE work
on him. The climber has to DO the positive work to haul himself up.
Work = (mass) x (gravity) x (height) .
For the guy in this problem:
Work = (67 kg) x (9.8 m/s²) x (3,500 meters)
= 2,298,100 joules.
If he eats no candy bars on the way, and completely depends on
his stored body fat for the energy, then he'll burn off
(2,298,100 joules) / (3.8 x 10⁷ joules/kg)
= 0.06 kg of fat.
That's only about 2.1 ounces. We KNOW he'll lose more weight than that,
climbing 11,000 feet. That's because climbing is pretty inefficient.
In addition to the potential energy you have to give your body weight,
you also have to expend energy breathing, digesting, metabolizing,
and sweating.