The absolute zero in temperature refers to the minimal possible temperature. It is the temperature at which the molecules of a system stop moving, so it is a really useful reference point.
<h3>Why absolute zero can't be reached?</h3>
It would mean that we need to remove all the energy from a system, but to do this we need to interact with the system in some way, and by interacting with it we give it "some" energy.
Actually, from a quantum mechanical point of view, the absolute zero has a residual energy (so it is not actually zero) and it is called the "zero point". This happens because it must meet <u>Heisenberg's uncertainty principle</u>.
So yes, the absolute zero can't be reached, but there are really good approximations (At the moment there is a difference of about 150 nanokelvins between the absolute zero and the smallest temperature reached). Also, there are a lot of investigations near the absolute zero, like people that try to reach it or people that just need to work with really low temperatures, like in type I superconductors.
So, concluding, why does the concept exist?
- Because it is a reference point.
- It is the theoretical temperature at which the molecules stop moving, defining this as the <u>minimum possible temperature.</u>
If you want to learn more about the absolute zero, you can read:
brainly.com/question/3795971
(E. Call the hospital to take them away
Answer:
Given
inlet Pga =40kpa = 40000pa
Patm=1.01bar = 1.01 x 100000pa =101000pa
exit Pab= 6.5 (inlet Pab)
But generally, Pab = Patm + Pga
1. the absolute pressure of the gas at the inlet, inlet Pab?
inlet Pab = Patm + inlet Pga
= 101000pa + 40000pa = 141kpa
the absolute pressure of the gas at the inlet, inlet Pab = 141kpa
2. the gage pressure of the gas at the exit? exit Pga?
exit Pab = Patm + exit Pga
exit Pga = exit Pab - Patm
= (6.5 x 141kpa) - 101kpa
= 815.5kpa
the gage pressure of the gas at the exit exit Pga=815.5kpa
Answer:
#WeirdestQuestionOfAllTime
Explanation: