Answer:
The head loss in Psi is 0.390625 psi.
Explanation:
Fluid looses energy in the form of head loss. Fluid looses energy in the form of head loss when passes through the valve as well.
Given:
Factor cv is 48.
Flow rate of water is 30 GPM.
GPM means gallon per minute.
Calculation:
Step1
Expression for head loss for the water is given as follows:

Here, cv is valve coefficient, Q is flow rate in GPM and h is head loss is psi.
Step2
Substitute 48 for cv and 30 for Q in above equation as follows:


h = 0.390625 psi.
Thus, the head loss in Psi is 0.390625 psi.
Answer:
- public class Main {
- public static void main(String[] args) {
- String testString = "abscacd";
-
- String evenStr = "";
- String oddStr = "";
-
- for(int i=testString.length() - 1; i >= 0; i--){
-
- if(i % 2 == 0){
- evenStr += testString.charAt(i);
- }
- else{
- oddStr += testString.charAt(i);
- }
- }
-
- System.out.println(evenStr + oddStr);
- }
- }
Explanation:
Firstly, let declare a variable testString to hold an input string "abscacd" (Line 1).
Next create another two String variable, evenStr and oddStr and initialize them with empty string (Line 5-6). These two variables will be used to hold the string at even index and odd index, respectively.
Next, we create a for loop that traverse the characters of the input string from the back by setting initial position index i to testString.length() - 1 (Line 8). Within the for-loop, create if and else block to check if the current index, i is divisible by 2, (i % 2 == 0), use the current i to get the character of the testString and join it with evenStr. Otherwise, join it with oddStr (Line 10 -14).
At last, we print the concatenated evenStr and oddStr (Line 18).
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.