1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
11

The thrust F of a screw propeller is known to depend upon the diameter d,speed of advance \nu ,fluid density p, revolution per s

econd N, and the coefficient of viscosity μ of the fluid. Determine the dimensions of each of the variables in terms of L,M,T,and find an expression for F in terms of these quantities
Engineering
1 answer:
musickatia [10]3 years ago
6 0

Answer:

<em>screw thrust = ML</em>T^{-2}<em> </em>

Explanation:

thrust of a screw propeller is given by the equation = pV^{2}D^{2} x \frac{ND}{V}Re

where,

D is diameter

V is the fluid velocity

p is the fluid density

N is the angular speed of the screw in revolution per second

Re is the Reynolds number which is equal to  puD/μ

where p is the fluid density

u is the fluid velocity, and

μ is the fluid viscosity = kg/m.s = ML^{-1}T^{-1}

<em>Reynolds number is dimensionless so it cancels out</em>

The dimensions of the variables are shown below in MLT

diameter is m = L

speed is in m/s = LT^{-1}

fluid density is in kg/m^{3} = ML^{-3}

N is in rad/s = LL^{-1}T^{-1} =

If we substitute these dimensions in their respective places in the equation, we get

thrust = ML^{-3}(LT^{-1}) ^{2}L^{2}\frac{T^{-1} L}{LT^{-1} }

= ML^{-3}L^{2}T^{-2}

<em>screw thrust = ML</em>T^{-2}<em> </em>

This is the dimension for a force which indicates that thrust is a type of force

You might be interested in
Why is it important to stop climate change?
vampirchik [111]

Answer:

avoiding cutting down tree carelessy

Explanation:

people cutting down tree due to high population in order to find land for building this house so government should encourage people to have less children in the families and train them that when they are cutting trees should plants 10 tree inorder to recovery tree that is take off.

3 0
2 years ago
Read 2 more answers
4. What are these parts commonly called?
patriot [66]

These parts are commonly called carburetor emulsion tubes. These tubes maintain the air-fuel ratio at different speeds.

The carburetor is a device of the combustion engine power supply system that mixes fuel and air in order to facilitate internal combustion.

The carburetor emulsion tubes are tubes that maintain the air-fuel ratio at different velocities.

These tubes (carburetor emulsion tubes) are small brass cylinders where the metering needle slides into them.

Learn more about carburetors here:

brainly.com/question/4237015

7 0
2 years ago
Technician A says that a voltage drop of 0.8 volts on the starter ground circuit is within specifications. Technician B says tha
Romashka-Z-Leto [24]

Answer:

Technician A is wrong

Technician B is right

Explanation:

voltage drop of 0.8 volts on the starter ground circuit is not within specifications. Voltage drop should be within the range of 0.2 V to 0.6 V but not more than that.

A spun bearing can seize itself around the crankshaft journal causing it not to move. As the car ignition system is turned on, the stater may draw high current in order to counter this seizure.

8 0
3 years ago
The combustion chamber has different shapes depending on the make and model of the engine. True or false
Alisiya [41]

Answer:

svdsdfdfsdfssdf

Explanation:

fsdsdfsdffsdsfdsdf

5 0
2 years ago
Air at 26 kPa, 230 K, and 220 rn/s enters a turbojet engine in flight. The air mass flow rate is 25 kg/s. The compressor pressur
Paha777 [63]

Answer:

Explanation:

Answer:

Explanation:

Answer:  

Explanation:  

This is a little lengthy and tricky, but nevertheless i would give a step by step analysis to make this as simple as possible.  

(a). here we are asked to determine the Temperature and Pressure.  

Given that the properties of Air;  

ha = 230.02 KJ/Kg  

Ta = 230 K  

Pra = 0.5477  

From the energy balance equation for a diffuser;  

ha + Va²/2 = h₁ + V₁²/2  

h₁ = ha + Va²/2 (where V₁²/2 = 0)  

h₁ = 230.02 + 220²/2 ˣ 1/10³  

h₁ = 254.22 KJ/Kg  

⇒ now we obtain the properties of air at h₁ = 254.22 KJ/Kg  

from this we have;  

Pr₁ = 0.7329 + (0.8405 - 0.7329)[(254.22 - 250.05) / (260.09 - 250.05)]  

Pr₁ = 0.77759  

therefore T₁ = 254.15K  

P₁ = (Pr₁/Pra)Pa  

= 0.77759/0.5477 ˣ 26  

P₁ = 36.91 kPa  

now we calculate Pr₂  

Pr₂ = Pr₁ (P₂/P₁) = 0.77759 ˣ 11 = 8.55349  

⇒ now we obtain properties of air at  

Pr₂ = 8.55349 and h₂ = 505.387 KJ/Kg  

calculating the enthalpy of air at state 2  

ηc = h₁ - h₂ / h₁ - h₂  

0.85 = 254.22 - 505.387 / 254.22 - h₂  

h₂ = 549.71 KJ/Kg  

to obtain the properties of air at h₂ = 549.71 KJ/Kg  

T₂ = 545.15 K

⇒ to calculate the pressure of air at state 2

P₂/P₁ = 11

P₂ = 11 ˣ 36.913  

p₂ = 406.043 kPa

but pressure of air at state 3 is the same,

i.e. P₂ = P₃ = 406.043 kPa

P₃ = 406.043 kPa

To obtain the properties of air at  

T₃ = 1400 K, h₃ = 1515.42 kJ/Kg and Pr = 450.5

for cases of turbojet engine,

we have that work output from turbine = work input to the compressor

Wt = Wr

(h₃ - h₄) = (h₂ - h₁)

h₄ = h₃ - h₂ + h₁  

= 1515.42 - 549.71 + 254.22

h₄ = 1219.93 kJ/Kg

properties of air at h₄ = 1219.93 kJ/Kg

T₄ = 1140 + (1160 - 1140) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

T₄ = 1150.58 K

Pr₄ = 193.1 + (207.2 - 193.1) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

Pr₄ = 200.5636

Calculating the ideal enthalpy of the air at state 4;

Лr = h₃ - h₄ / h₃ - h₄*

0.9 = 1515.42 - 1219.93 / 1515.42 - h₄  

h₄* = 1187.09 kJ/Kg

now to obtain the properties of air at h₄⁻ = 1187.09 kJ/Kg

P₄* = 179.7 + (193.1 - 179.7) [(1187.09 -1184.28) / (1207.57 - 1184.28)]

P₄* = 181.316

P₄ = (Pr₄/Pr₃)P₃       i.e. 3-4 isentropic process

P₄ = 181.316/450.5 * 406.043

P₄ = 163.42 kPa

For the 4-5 process;

Pr₅ = (P₅/P₄)Pr₄

Pr₅ = 26/163.42 * 200.56 = 31.9095

to obtain the properties of air at Pr₅ = 31.9095

h₅= 724.04 + (734.82 - 724.04) [(31.9095 - 3038) / (32.02 - 30.38)]

h₅ = 734.09 KJ/Kg

T₅ = 710 + (720 - 710) [(31.9095 - 3038) / (32.02 - 30.38)]

T₅ = 719.32 K

(b) Now we are asked to calculate the rate of heat addition to the air passing through the combustor;

QH = m(h₃-h₂)

QH = 25(1515.42 - 549.71)

QH = 24142.75 kW

(c). To calculate the velocity at the nozzle exit;

we apply steady energy equation of a flow to nozzle

h₄ + V₄²/2 = h₅ + V₅²/2

h₄  + 0  = h₅₅ + V₅²/2

1219.9 ˣ 10³ = 734.09 ˣ 10³ + V₅²/2

therefore, V₅ = 985.74 m/s

cheers i hope this helps

6 0
3 years ago
Other questions:
  • A gear box’s shaft is made of a hollow circular steel tube with allowable yield stress equal to σa????????o???? . The shaft is l
    7·1 answer
  • A rod of length L lies along the x axis with its left end at the origin. It has a nonuniform charge density λ = αx, where α is a
    14·2 answers
  • 2. In the above figure, what type of cylinder arrangement is shown in the figure above?
    9·2 answers
  • What steps would you take to design an improved toothpaste container?
    12·1 answer
  • What are significant figures​
    13·1 answer
  • Good Morning. Can you help me on this question please?
    5·2 answers
  • How do i open a door<br> please i've been trapped in this room for ages
    9·1 answer
  • What is the name of the part that supports the headlight assembly?
    15·1 answer
  • Identify the following formulas:
    15·1 answer
  • In one study the critical stress intensity factor for human bone was calculated to be 4.05 MN/m3/2. If the value of Y in Eq. (2.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!