1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anarel [89]
3 years ago
12

1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty per

cent of the flow is extracted at 1000 kPa to a feedwater heater and the remainder flows out at 200 kPa. Find the two exit temperatures and the turbine power output.
Engineering
1 answer:
KiRa [710]3 years ago
7 0

Answer:

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

You might be interested in
When mining diamonds with a stone pick what will be the outcome
Soloha48 [4]

Answer:

The diamond ore will break and you won't get any diamonds.

Explanation:

4 0
3 years ago
Read 2 more answers
Two flat plates, separated by a space of 4 mm, are moving relative to each other at a velocity of 5 m/sec. The space between the
xenn [34]

Answer:

0.008

Explanation:

From the question, the parameters given are:

Velocity V = 5 m/s

Pressure = 10 pa

But pressure = F/A

10 = F/A

F = 10A

Substitute all the parameters into the formula below

Coefficient of viscosity (η) = F × r /[AV]

Where

F = tangential force,

r = distance between layers,

A = Area, and

V = velocity

(η) = 10A × 0.004 /[A × 5]

The A will cancel out

(η) = 10 × 0.004 /[5]

(η) = 0.04 /5

(η) = 0.008

Therefore, the coefficient of viscosity of the fluid is 0.008

5 0
3 years ago
5 cause of a electrical problem​
cupoosta [38]

Answer:

1. Poor circuit protection

2.Grounding issue

3. lighting problem

4. Electrical shocks

5. High electricity bills

Explanation:

8 0
3 years ago
Use Routh's stability criterion to determine how many roots with positive real parts the following equations have:
Pavlova-9 [17]

Answer:

a) no roots not in LHP

b) 2 roots not in LHP

c) 2 roots not in the LHP

d) 2 roots not in the LHP

e) 2 roots not in LHP

Explanation:

a) s^4 + 8s^3 + 32s^2 + 80s + 100 = 0\\\\s^4:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:32\:\:\:\:\:\:100\\s^3:\:\:\:8\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:80\\s^2:\:\:\:22\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:100\\s^1:\:\:\:80-\frac{800}{22} =43.6\\s^0:\:\:\:100

No roots not in the LHP

b) s^5 + 10s^4 + 30s^3 + 80s^2+344s + 480 =0 \\\\s^5:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:30\:\:\:\:\:\:344\\s^4:\:\:\:10\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:480\\s^3:\:\:\:22\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:296\\s^2:\:\:\:-545\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:480\\s^1:\:\:\:490\\s^0:\:\:\:480

2 roots not in the LHP

c) s^4 + 2s^3 + 7s^2 -2s + 8 = 0 \\\\s^4:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:7\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:8\\s^3:\:\:\:2\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:-2\\s^2:\:\:\:8\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:8\\s^1:\:\:\:-4\\s^0:\:\:\:8

There are roots in the RHP (not all coefficients are greater than 0).

2 roots not in the LHP

d) s^4 + 2s^3 + 7s^2 -2s + 8 = 0 \\\\s^3:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:20\\s^2:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:78\\s^1:\:\:\:-58\\s^0:\:\:\:78

There are two sign changes in the first column of the Routh array.

2 roots not in the LHP

e) s^4 + 2s^3 + 7s^2 -2s + 8 = 0 \\\\s^4:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:6\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:25\\s^3:\:\:\:4\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:12\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: new \:\:row \\s^2:\:\:\:3\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:25\\s^1:\:\:\:12-\frac{100}{3}=-21.3 \\s^0:\:\:\:25

2 roots not in LHP

check:

 a (s) = 0  ⇒

 s^2 = -3 \limits^+_- 4j = 5e^{j(\pi \limits^+_- 0.92)}\\\\s = \sqrt5 e^{j( \frac{\pi}{2} \limits^+_-  0.46)+n\pi j},\:\:\:\:\: n= 0, 1\\

3 0
3 years ago
The interior wall of a building is made from 2×4 wood studs, plastered on one side. If the wall is 13 ft high, determine the loa
Elanso [62]

Answer:

load  = 156 lb/ft

Explanation:

given data

interior wall of a building = 2×4 wood studs

plastered = 1 side

wall height =  13 ft

solution

we get here load so first we get wood stud load  and that is  

we know here from ASCE-7 norm

dead load of 2 x 4 wood studs with 1 side plaster  = 12 psf

and we have given height 13 ft

so load will be =  12 psf × 13 ft

load  = 156 lb/ft

7 0
3 years ago
Other questions:
  • To operate a vehicle in Florida, you must
    10·2 answers
  • Cuál de las siguientes es la mejor manera de practicar sus habilidades de tecnología de secundaria?
    9·1 answer
  • An air-standard cycle with constant specific heats at room temperature is executed in a closed system with 0.003 kg of air and c
    15·1 answer
  • A flat-plate solar collector is 2 m long and 1 m wide and is inclined 60o to the horizontal. The cover plate is separated from t
    13·1 answer
  • A refrigerator operates on average for 10.0 hours an day. If the power rating is the refrigerator is 709 w how much electrical e
    13·1 answer
  • A body weighs 50 N and hangs from a spring with spring constant of 50 N/m. A dashpot is attached to the body. If the body is rai
    7·1 answer
  • QUESTION:
    13·1 answer
  • For the floor plan shown, if a = sm b= 8m, specify type of Load on Beam AHS<br> D<br> B В
    10·1 answer
  • Technician A says automotive gasoline engines run on the 2 stroke principal. Technician B says Diesel engine hace less compressi
    15·1 answer
  • Planetary gears require the armature to be offset via a gear housing that holds the starter drive.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!