Answer:
<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>
Explanation:
The gravitational force is defined as

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.
Among the options, the pair that would have the greatest gravitational force is Mass of 1 Kg and 2 Kg, with 1 meter between them.
Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.
Therefore, the right answer is the second choice.
<h3>Answer</h3>
At a high temperature above 20° oxygen solubility starts to decrease.
<h3>Explanation</h3>
Oxygen, O2 is a very essential component of water as we can see in its chemical formula h2O.
The solubility of oxygen decreases as temperature increases. This means that warmer water will have less dissolved oxygen than does cooler water.
<h3>Other factors that affects oxygen solubility in water</h3>
Salt levels
higher the salt levels in water, lower will be oxygen in it.
Pressure
Water at lower altitudes can hold more dissolved oxygen than water at higher altitudes because dissolved oxygen will increase as pressure increases.
Answer: The answer is C.) 25 m/s^2.
Explanation: If you input 5 as s, you would have to use the exponent 2. This means that you have to multiply 5 by 5. 5 x 5= 25.
Edit: Also, because the surface is frictionless, it will make the object go faster too. Nothing can really slow it down unless something blocks it.
Answer:
2.083 V.
Explanation:
Stopping potential is the potential that is required to stop the current to zero . This potential is applied externally to oppose the potential created by the photoelectric effect . It gives the measure the photoelectric potential being generated .
Here current drops to 25 μA to 19 μA by a potential of 500mV
Change in current
= 25 - 19 = 6 μA
Voltage requirement for unit reduction in current
= 500 / 6 μA
To reduce current 0f 25 μA
requirement of V = (500 / 6 ) x 25 = 2083.33 mV = 2.083 V.
The distance decreases as the time increases