The answer for the given question above is IONIC. <span>Ionic substances form giant ionic </span>lattices<span> containing oppositely charged ions. They have high melting and boiling points, and </span>conduct<span> electricity when melted or dissolved in water.</span>
Answer:
Here's what I find.
Explanation:
Iodine-131
Iodine-131 is both a beta emitter and a gamma emitter.

About 90 % of the energy is β-radiation and 10 % is γ-radiation. Both forms are highly energetic.
The main danger is from ingestion. The iodine concentrates in thyroid gland, where the β-radiation destroys cells up to 2 mm from the tissues that absorbed it.
Both the β- and γ-radiation cause cell mutations that can later become cancerous. Small doses, such as those absorbed from the nuclear disasters in the Ukraine and Japan, can cause cancers years after the original iodine has disappeared.
Plutonium-239
Plutonium-239 is an alpha emitter.

Alpha particles cannot penetrate the skin, so external exposure isn't much of a health risk.
However, they are extremely dangerous when they are inhaled and get inside cells. They travel first to the blood or lymph system and later to the bone marrow and liver, where they cause up to 1000 times more chromosomal damage than beta or gamma rays.
It takes about 20 years for plutonium to be eliminated from the liver around 50 years for from the skeleton, so it has a long time to cause damage.
Answer:
Mass = 18.9 g
Explanation:
Given data:
Mass of Al₂O₃ formed = ?
Mass of Al = 10.0 g
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Number of moles of Al:
Number of moles = mass/molar mass
Number of moles = 10.0 g/ 27 g/mol
Number of moles = 0.37 mol
Now we will compare the moles of Al and Al₂O₃.
Al : Al₂O₃
4 : 2
0.37 : 2/4×0.37 = 0.185 mol
Mass of Al₂O₃:
Mass = number of moles × molar mass
Mass = 0.185 mol × 101.9 g/mol
Mass = 18.9 g
Answer:
The higher the temperature, the faster the particles move, the lower the temperature, the slower.
Answer:
<h3>The answer is 32 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 768 g
volume = 24 cm³
We have

We have the final answer as
<h3>32 g/cm³</h3>
Hope this helps you