Answer:

Explanation:
1. Solubility of CaF_2
(a) Molar solubility
CaF₂ ⇌ Ca²⁺ + 2F⁻
![K_{\text{sp }} = \text{[Ca$^{2+}$]}\text{[F$^{-}$]}^{2}= 4.0 \times 10^{-8}\\s(2s)^{2}=4.0 \times 10^{-8}\\4s^{3} = 4.0 \times 10^{-8}\\s^{3} = 1.0 \times 10^{-8}\\s =2.2 \times 10^{-3}\text{ mol/L}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bsp%20%7D%7D%20%3D%20%5Ctext%7B%5BCa%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BF%24%5E%7B-%7D%24%5D%7D%5E%7B2%7D%3D%204.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%282s%29%5E%7B2%7D%3D4.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5C4s%5E%7B3%7D%20%3D%204.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%5E%7B3%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%20%3D2.2%20%5Ctimes%2010%5E%7B-3%7D%5Ctext%7B%20mol%2FL%7D)
(b) Mass solubility

2. pH
pH = -log [H⁺] = -log(3.0 × 10⁻⁴) = 3.52
3. Oxidizing and reducing agents
Zn + Cl₂ ⟶ ZnCl₂

The oxidation number of Cl has decreased from 0 to -1.
Cl has been reduced, so Cl is the oxidizing agent.
4. Oxidation numbers
(a) Al₂O₃

1O = -2; 3O = -6; 2Al = +6; 1Al = +3
(b) XeF₄

1F = -1; 4F = -4; 1 Xe = +4
(c) K₂Cr₂O₇

1K = +1; 2K = +2; 1O = -2; 7O = -14
+2 - 14 = -12
2Cr = + 12; 1 Cr = +6
Zinc would be considered the strongest reducing agent.
<h3>Reducing agent</h3>
A reducing agent is a chemical species that "donates" one electron to another chemical species in chemistry (called the oxidizing agent, oxidant, oxidizer, or electron acceptor). Earth metals, formic acid, oxalic acid, and sulfite compounds are a few examples of common reducing agents.
Reducers have excess electrons (i.e., they are already reduced) in their pre-reaction states, whereas oxidizers do not. Usually, a reducing agent is in one of the lowest oxidation states it can be in. The oxidation state of the oxidizer drops while the oxidizer's oxidation state, which measures the amount of electron loss, increases. The agent in a redox process whose oxidation state rises, which "loses/donates electrons," which "oxidizes," and which "reduces" is known as the reducer or reducing agent.
Learn more about reducing agent here:
brainly.com/question/2890416
#SPJ4
<h3 />
Maglev trains were created to connect Shanghai Pudong International Airport to Central Pudong. Transrapid, another name for the Maglev train is said to be the fastest train. It can run up to 270/mph in just eight minutes.
Compared to other transportation systems, Transrapid is faster and more cost effective. It has less maintaining coverage and zero sounds compared to the ordinary ones.
This kind of train is one of the most effective means of transportation. It lessens traffic and pollution caused by car emission. It also saves more time for people who are always on the go.
Answer:
Explanation:
To calculate pH you need to use Henderson-Hasselbalch formula:
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Where HA is the acid concentration and A⁻ is the conjugate base concentration.
The equilibrium of acetic acid is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ pka: 4,75
Where <em>CH₃COOH </em>is the acid and <em>CH₃COO⁻ </em>is the conjugate base.
Thus, Henderson-Hasselbalch formula for acetic acid equilibrium is:
pH = 4,75 + log₁₀ ![\frac{[CH_{3}COO^-]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOO%5E-%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
a) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[2 mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B2%20mol%5D%7D)
<em>pH = 4,75</em>
<em></em>
b) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[1mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B1mol%5D%7D)
<em>pH = 5,05</em>
<em></em>
I hope it helps!
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.