1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
15

A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 9.00 mm and dielectric constant

k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85x10-12 C2/N.m2 . Find the energy U1 of the dielectric-filled capacitor.
Physics
1 answer:
PIT_PIT [208]3 years ago
4 0

Answer:

9.96\cdot 10^{-10}J

Explanation:

The capacitance of the parallel-plate capacitor is given by

C=\epsilon_0 k \frac{A}{d}

where

ϵ0 = 8.85x10-12 C2/N.m2 is the vacuum permittivity

k = 3.00 is the dielectric constant

A=30.0 cm^2 = 30.0\cdot 10^{-4}m^2 is the area of the plates

d = 9.00 mm = 0.009 m is the separation between the plates

Substituting,

C=(8.85\cdot 10^{-12}F/m)(3.00 ) \frac{30.0\cdot 10^{-4} m^2}{0.009 m}=8.85\cdot 10^{-12} F

Now we can calculate the energy of the capacitor, given by:

U=\frac{1}{2}CV^2

where

C is the capacitance

V = 15.0 V is the potential difference

Substituting,

U=\frac{1}{2}(8.85\cdot 10^{-12}F)(15.0 V)^2=9.96\cdot 10^{-10}J

You might be interested in
(b) Assuming h is small in comparison to the radius of the Earth, show that the difference in free-fall acceleration between two
Sholpan [36]

Vertical distance h isΔg=\frac{-2GM}{ RE^{3} }

<h3>What is vertical?</h3>
  • The distance between two vertical places is known as the vertical separation or vertical distance. There are numerous ways to express vertical position using vertical coordinates, including depth, height, altitude, elevation, etc.
  • The formula for vertical distance from the ground is y = - g * t2 / 2, where g is the acceleration of gravity and h is a height.
  • The vertical distance between the measurement point and the point of observation on Earth's surface. Altitude is the vertical distance from the measurement place to mean sea level.

Assuming h is small in comparison to the radius of the Earth, show that the difference in free-fall acceleration between two points separated by vertical distance h isΔg = (2GMeH) / RE³:

Given:

Separated between two points=h

And, h∠∠R_{E}           (R_{E}= radius of the Earth)

Now, \frac{dg}{dr} =\frac{-2GM}{ RE^{3} }

dg =\frac{-2GM}{ RE^{3} } dr

Δg=\frac{-2GM}{ RE^{3} }  

Therefore, Vertical distance h isΔg=\frac{-2GM}{ RE^{3} }  

To learn more about Vertical, refer to:

brainly.com/question/24261456

#SPJ4

4 0
2 years ago
A basketball player can leap upward 0.43 m. how long does he remain in the air? use an acceleration due to gravity of 9.80 m/s2
MArishka [77]
From the equations of linear motion,
v² = u² + 2as where v is the final velocity, u is the initial velocity and a is the gravitational acceleration, and s is the displacement,
Thus, v² = u² -2gs, but v=0
hence, u² = 2gs
                = 2×9.81×0.43
                = 8.4366
            u = √8.4366
               =2.905 m/s
Hence the initial velocity is 2.905 m/s
 Then using the equation v= u +gt .
Therefore, v = u -gt. (-g because the player is jumping against the gravity)
but, v = 0
Thus, u= gt
Hence, t = u/g
              = 2.905/9.81
              = 0.296 seconds


3 0
3 years ago
A car wheel turns through 277° in 10.7 s. Calculate the angular speed of the wheel.
slava [35]

Answer:

The angular speed of the wheel is 0.452 rad/s

Explanation:

The angle through which the car wheel turns, Δθ = 277° = 277/360 × 2·π radian

The time it takes for the car wheel to turn, Δt = 10.7 s

The angular speed, ω is given by the following equation;

Angular \ speed = \dfrac{Change \ in \ angular \ rotation }{Change \ in \ time} = \dfrac{\Delta \theta}{\Delta t}

Substituting the known values for Δθ and Δt gives;

Angular \ speed = \dfrac{\dfrac{277 ^{\circ}}{360 ^{\circ }  }  \times 2 \times \pi \ radian}{10.7 \ seconds} \approx 0.452 \ rad/s

The angular speed of the wheel = 0.452 rad/s

3 0
3 years ago
In case A below, a 1 kg solid sphere is released from rest at point S. It rolls without slipping down the ramp shown, and is lau
mestny [16]

Answer:

the block reaches higher than the sphere

\frac{y_{sphere}} {y_block} = 5/7

Explanation:

We are going to solve this interesting problem

A) in this case a sphere rolls on the ramp, let's find the speed of the center of mass at the exit of the ramp

Let's use the concept of conservation of energy

starting point. At the top of the ramp

         Em₀ = U = m g y₁

final point. At the exit of the ramp

         Em_f = K + U = ½ m v² + ½ I w² + m g y₂

notice that we include the translational and rotational energy, we assume that the height of the exit ramp is y₂

energy is conserved

          Em₀ = Em_f

         m g y₁ = ½ m v² + ½ I w² + m g y₂

angular and linear velocity are related

        v = w r

the moment of inertia of a sphere is

         I = \frac{2}{5} m r²

we substitute

         m g (y₁ - y₂) = ½ m v² + ½ (\frac{2}{5} m r²) (\frac{v}{r})²

         m g h = ½ m v² (1 + \frac{2}{5})

where h is the difference in height between the two sides of the ramp

h = y₂ -y₁

         mg h = \frac{7}{5} (\frac{1}{2} m v²)

         v = √5/7  √2gh

This is the exit velocity of the vertical movement of the sphere

         v_sphere = 0.845 √2gh

B) is the same case, but for a box without friction

   starting point

          Em₀ = U = mg y₁

   final point

          Em_f = K + U = ½ m v² + m g y₂

          Em₀ = Em_f

          mg y₁ = ½ m v² + m g y₂

          m g (y₁ -y₂) = ½ m v²

          v = √2gh

this is the speed of the box

          v_box = √2gh

to know which body reaches higher in the air we can use the kinematic relations

          v² = v₀² - 2 g y

at the highest point v = 0

           y = vo₀²/ 2g

for the sphere

           y_sphere = 5/7 2gh / 2g

           y_esfera = 5/7 h

for the block

           y_block = 2gh / 2g

            y_block = h

       

therefore the block reaches higher than the sphere

         \frac{y_{sphere}} {y_bolck} = 5/7

3 0
3 years ago
Why is it that the number of hours in the day never change yet some days fly by and others drag on??
Serhud [2]

because the season change if you are in summer the days seem longer because the sun stays up longer if you are in the winter the days seem shorter because the sun goes down sooner.

4 0
3 years ago
Read 2 more answers
Other questions:
  • What would happen to the waveform if the negative and positive electrode positions are switched?
    10·1 answer
  • What is the quantum distance from planet Nebula to Planet earth?
    5·1 answer
  • With some manipulation, the rydberg equation can be rewritten in the form e=constant×(1nf2−1ni2) which allows you to calculate t
    7·1 answer
  • Which single force acts on an object in freefall?
    9·2 answers
  • A bicycle moves with a speed of 6 km/h for 2 hour and the speed of 4 km/h for the next 3 hours .find the average speed and the d
    5·1 answer
  • 1. A 13 kg mass sliding on a frictionless horizontal surface at 21 m/s hits a spring that is attached to a
    14·1 answer
  • HELP !!
    7·1 answer
  • An object that is falling through the air will feel"weightless because:
    6·1 answer
  • How does gravity affect your ability to live on a planet?
    11·2 answers
  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. a proton is released from re
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!