Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2
The force exerted by the magnetic in terms of the magnetic field is,

Where B is the magnetic fied strength and F is the force.
Thus, if the magnetic A has twice magnetic field strength than the magnet B,
Then,

Thus, the force exerted by the magnet B is,

Thus, the force exerted by the magnet B on magnet A is 50 N.
The force exerted by the magnet A exerts on the magnet B is exactly 100 N as given.
Hence, the option B is the correct answer.
Explanation:
because it doesn't depend upon other unit like kg meter and second
Answer:
500cal
Explanation:
Given parameters:
Mass of water = 50g
Initial temperature = 22°C
Final temperature = 32°C
Specific heat of water = 1cal/g
Unknown:
Amount of heat absorbed by the water in calories = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the amount of heat absorbed
m is the mass
c is the specific heat capacity
Ф is the temperature change
H = 50 x 1 x (32 - 22) = 500cal
If the bubble travels 10 meters per second and it takes 10 seconds, then just multiply the distance per second by the total seconds to get the total depth.
10 • 10 = 100
The lake is 100 meters deep.
Think of it this way to clarify the answer:
It takes a bubble traveling at a speed of 10 meters per second 10 seconds to travel 100 meters.