The force that opposes motion to moving parts is F<span>riction</span><span>
Hope this helped!
</span>
The deceleration experienced by the gymnast is the 9 times of the acceleration due to gravity.
Now from Newton`s first law, the net force on gymnast,

Here, W is the weight of the gymnast and a is the acceleration experienced by the gymnast (
acceleration due to gravity)
Therefore,
OR 
Given
and
Substituting these values in above formula and calculate the force exerted by the gymnast,


The missing word here is <u>Asthenosphere.</u><u> </u>
The convection in the asthenosphere directly propels the tectonic plates of the earth.
Did you know that the asthenosphere is thought to remain malleable because of heat from deep within the Earth? It is thought to be lubricating the earth's tectonic plates' undersides and enabling movement.
The older, denser portions of the lithosphere that are dragged downward in subduction zones are stored in the asthenosphere, according to the theory of plate tectonics.
The lithosphere above is stressed by convection currents, and the cracking that frequently results manifests as earthquakes.
Magma is forced upward through volcanic vents and spreading centers by convection currents produced within the asthenosphere, which also results in the formation of new crust.
Learn why properties of the asthenosphere are important: brainly.com/question/11484043
#SPJ4
<span>U could compare them using the intensity
technique when bending waves are negligible in comparison with
quasi-longitudinal waves.</span>
Answer:
R = 8.01 m
Explanation:
We can solve this problem using the projectile launch equations. The jump length is the throw range
R = v₀² sin 2θ / g
in the exercise they give us the initial speed of 9.14 m / s and in the launch angle 35º
let's calculate
R = 9.14² sin (2 35) / 9.8
R = 8.01 m
this is the jump length