Answer: C (The first species to populate an uninhabited area)
Explanation:
Answer:
Choice d. No effect will be observed as long as other factors (temperature, in particular) are unchanged.
Explanation:
The equilibrium constant of a reaction does not depend on the pressure. For this particular reaction, the equilibrium quotient is:
.
Note that the two sides of this balanced equation contain an equal number of gaseous particles. Indeed, both
and
will increase if the pressure is increased through compression. However, because
and
have the same coefficients in the equation, their concentrations are raised to the same power in the equilibrium quotient
.
As a result, the increase in pressure will have no impact on the value of
. If the system was already at equilibrium, it will continue to be at an equilibrium even after the change to its pressure. Therefore, no overall effect on the equilibrium position should be visible.
Answer:
The creation of regulations that limit timber activities and the exploitation of wood can prevent soil erosion in Troy.
Explanation:
The exploitation of the wood was an intense activity and that did not have any regulation that would limit its damages, caused by its exploratory activities.
As the timber market was totally undisciplined, the exploitation of the wood caused a strong deforestation, leaving the soil totally unprotected and susceptible to strong erosion.
Soil erosion has a very negative impact on the environment, requiring regulations to be made to prevent this from happening.
Based on this, we can say that one way to prevent environmental problems in the seaport of troy is by establishing laws and regulations that limit logging activities.
<u>Answer:</u> The total pressure inside the container is 77.9 kPa
<u>Explanation:</u>
Dalton's law of partial pressure states that the total pressure of the system is equal to the sum of partial pressure of each component present in it.
To calculate the total pressure inside the container, we use the law given by Dalton, which is:

We are given:
Vapor pressure of oxygen gas,
= 40.9 kPa
Vapor pressure of nitrogen gas,
= 23.3 kPa
Vapor pressure of argon,
= 13.7 kPa
Putting values in above equation, we get:

Hence, the total pressure inside the container is 77.9 kPa
In one mole of C7H18 there are 18 moles of H (the number folowing the H)*
>> the ratio is 1:18
In 5.2 moles of C7H18 there are x moles of H
>> the ratio is 5.2:x
Cross multiply the two ratios
1x = 18×5.2
x = 93.6 moles of H
>> In 5.2 moles of C7H18 there are 93.6 moles of H
* This isnt a rule that you can always use.
However to find the mole of a certain element in a certain molucle all you have to do is count how many moles of the element are present in the molecule.
>> example1 >> H2O ;
2 H and 1 O
>> example2 >> CH3COOH ; [you add up all the moles of the same element]
(1+1) 2 C , (3+1) 4 H and (1+1) 2 O
>> example3 >> Mg(OH)2 ; [you multiply whetever is in parenthesis by the number after it 2] 1 Mg , (1×2) 2 O and (1×2) 2 H