Answer:
hydrogen + oxygen = water
Answer:
73.88 g/mol
Explanation:
For this question we have to keep in mind that the unknown substance is a <u>gas</u>, therefore we can use the <u>ideal gas law</u>:

In this case we will have:
P= 1 atm
V= 3.16 L
T = 32 ªC = 305.15 ºK
R= 0.082 
n= ?
So, we can <u>solve for "n"</u> (moles):



Now, we have to remember that the <u>molar mass value has "g/mol"</u> units. We already have the grams (9.33 g), so we have to <u>divide</u> by the moles:


Answer:
Original temperature (T1) = - 37.16°C
Explanation:
Given:
Gas pressure (P1) = 2.75 bar
Temperature (T2) = - 20°C
Gas pressure (P2) = 1.48 bar
Find:
Original temperature (T1)
Computation:
Using Gay-Lussac's Law
⇒ P1 / T1 = P2 / T2
⇒ 2.75 / T1 = 1.48 / (-20)
⇒ T1 = (2.75)(-20) / 1.48
⇒ T1 = -55 / 1.48
⇒ T1 = - 37.16°C
Original temperature (T1) = - 37.16°C
Answer:
20 mL OF 6 M HYDROCHLORIC ACID WILL BE NEEDED
Explanation:
M1 V1 = M2 V2
M1 = Molarity of sodium hydroxide = 3 M
V1 = volume of sodium hydroxide = 40 mL
M2 = Molarity of hydrochloric acid = 6 M
V2 = Volume of hydrochloric acid = unknown
Rearranging the equation, we have:
V2 = M1 V1 / M2
V2 = 3 * 40 mL / 6
V2 = 120 / 6
V2 = 20 mL
To precipitate the benzoic acid by 6 M of hydrochloric acid, 20 mL volume will be needed.