Answer:
proportion of candies are green.
Solution:
In bag A,
candies are yellow.
this proportion shows ratio of favorable over total candies.
Here numerator number is 2.
So, Total number of yellow candies should be 2x
Total number of candies in Bag A would be 3x
Number of green candies in bag A = 3x-2x = x
Now we find the portion of green candies in bag A
portion of candies are green in bag A
Answer:
<u>The two numbers are 23 and 56</u>
Step-by-step explanation:
Let's say the two numbers are A and B.
We are told:
1) A+B=79
2) 3A+5B=283
Let's take the first expression and solve for A:
A+B=79
A=79-B
Now use this value of A in the second expression:
3A+5B=283
3(79-B)+5B=283
237-3B+5B=283
2B = 46
B = 23
Since B=23, we know from 1) that
A+B=79
A+23=79
A = 56
<u>CHECK:</u>
Does A+B=79?
56+23 = 79? <u>YES</u>
Does 3A+5B=283?
3(56)+5(23)=283
168 + 115 = 283? <u>YES</u>
I think the answer is D , I hope this helped. If not I’m sorry I tried my hardest
No cause it’s a curved line so it’s not direct
Condition (A) P(B/A) = y is true.
<h3>
What is probability?</h3>
- Probability is an area of mathematics that deals with numerical descriptions of how probable an event is to occur or how likely a statement is to be true.
To find the true condition:
If two events are independent, then:
Use formulas for conditional probabilities:
- Pr(A/B) = Pr(A∩B) / Pr(B)
- Pr(B/A) = Pr(B∩A) / Pr(A)
For independent events these formulas will be:
- Pr(A/B) = Pr(A∩B) / Pr(B) = Pr(A) . Pr(B) / Pr(B) = Pr(A)
- Pr(B/A) = Pr(B∩A) / Pr(A) = Pr(B) . Pr(A) / Pr(A) = Pr(B)
Now in your case, Pr(A) = x and Pr(B) = y.
- Pr(A/B) = x, Pr(B/A) = y, Pr(A∩B) = x.y
Therefore, condition (A) P(B/A) = y is true.
Know more about probability here:
brainly.com/question/25870256
#SPJ4
The complete question is given below:
The probability of event A is x, and the probability of event B is y. If the two events are independent, which of these conditions must be true?
a. P(B|A) = y
b. P(A|B) = y
c. P(B|A) = x
d. P(A and B) = x + y
e. P(A and B) = x/y