The answer is D.) all of the above
Answer:
It increases proportionally
Explanation:
The gravitational force between the Earth and an object on its surface is given by

where
G is the gravitational constant
M is the Earth's mass
m is the mass of the object
R is the Earth's radius
In this problem, the Earth's mass is increased, while the diameter (and therefore, the radius) doesn't change. From the equation, we see that the gravitational force is directly proportional to the Earth's mass: therefore, if the mass is increased, the force will increase as well by the same proportion (for example, if the mass is doubled, the force will double as well)
Answer:
rotates faster
Explanation:
A huge rotating cloud of particles in space gravitate together to form an increasingly dense ball As it shrinks in size, the cloud rotates faster. Because Angular momentum is conserved, so when it shrinks the moment of inertia decreases, then angular speed must increase. So it rotates fast.