Answer:
Explanation:
The problem is related to rotational motion . So we shall find out rotational kinetic energy .
K E = 1/2 x I ω²
ω is the final angular velocity
Moment of inertial of the disk
I ₁ = 1/2 m r²
= .5 x 165 x 2.93²
= 708.25 kgm²
Moment of inertial of the person
I₂ = mr²
= 62.5 x 2.93²
= 536.55 kgm²
ω₂ = v / R
= 3.11 / 2.93 rad /s
At the time of jumping , law of conservation of angular momentum will apply
I₁ ω₁ + I₂ω₂ = (I₁ + I₂)ω
708.25 x0.691 + 536.55 x ( 3.11 / 2.93 ) = ( 708.25 + 536.55 ) ω
ω = 0 .85 rad/ s
K E = 1/2 x I ω²
= .5 x ( 708.25 + 536.55 ) ( .85 )²
449.68 J
Carbon is the answer to the problem
Answer:
When the doctor has the syringe, it is full of air. So, now after the doctor pushes the plunger, hence the air gets released into the medicine container. After this the doctor then takes the plunger and pull it back. Now , the air gets pulled up back into the syringe, but not only does the air come in but also the medicine because of the pressure build up.
If my answer helped, please mark me as the brainliest!!
Thank You!
Steam enters a cylinder—- A