1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
evablogger [386]
3 years ago
6

Difference between wavefront and wavelets​

Physics
1 answer:
Sergio [31]3 years ago
4 0

Answer:

A wavefront is the locus of all the particles which are in phase. A wavelet is an oscilation that starts from zero, then the amplitude increases and later decreases to zero

You might be interested in
What type of energy does a stove use to convert into heat
sasho [114]
This Is What I Found<span>(Non-electric stoves and ovens use gas energy, a chemical energy. This is then transformed into heat.) What types of energy does a computer convert electricity into? (Light, sound, motion, and heat.)    I'm Not Taking Credit For It, Because I Didn't Come Up With That Answer.</span>
4 0
3 years ago
Read 2 more answers
PLEASEEE HELPPPPPPP:
tatuchka [14]
V(voltage) = I(current)R(resistance)
substitute in the values

V = 15 * 0.10
V = 1.5 volts
7 0
3 years ago
Read 2 more answers
for any object suspended by any number of ropes, wires, or chains, how is the total amount of tension (tension in each rope adde
Sveta_85 [38]

Answer:

To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.

Explanation:

The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]

For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.

As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.

Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.

7 0
3 years ago
Find the poing of center of gravity<br><br>plz show the steps...​
olasank [31]

Answer:

C

Explanation:

For a uniformly distributed mass, the center of gravity is also the geometric center.  For this shape, the center is at point C.

7 0
3 years ago
Particle A and particle B, each of mass M, move along the x-axis exerting a force on each other. The potential energy of the sys
Archy [21]

Speed of particle B is 2v₀/3 m/s to the left. Particle A and particle B will always have equal speed since they experience equal forces.

<h3>Conservation of energy</h3>

The speed and direction of the particle B is determined by applying the principle of conservation of energy as follows;

K.E₁ + P.E₁ = K.E₂ + P.E₂

\frac{1}{2} Mv^2_A + \frac{G}{r^2} = \frac{1}{2} Mv^2_B + \frac{G}{r^2} \\\\ \frac{1}{2} Mv^2_A = \frac{1}{2} Mv^2_B\\\\v^2_A = v^2_B\\\\v_A = v_B

v_B = \frac{2v_0}{3}  \ m/s \ to \ the \ left

At any given position, the speed of particle A and particle B will be equal, since they experience equal force and they have equal masses.

The complete question is below:

Particle A and particle B, each of mass M, move along the x-axis exerting a force on each other. The potential energy of the system of two particles assosicated with the force is given by the equation U=G/r 2, where r is the distance between the two particles and G is a positive constant. At time t=T1 particle A is observed to be traveling with speed 2vo/3 to the left. The speed and direction of motion of particle B is ?

Learn more about conservation of energy here: brainly.com/question/166559

5 0
2 years ago
Read 2 more answers
Other questions:
  • Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
    15·2 answers
  • What kind of charge does an object have if it has gained electrons
    11·2 answers
  • As energy transformations occur within a system, the total energy of the system it A)increases B) decreases C) remains constant
    13·1 answer
  • A plastic rod that has been charged to -15.0nC touches a metal sphere. Afterward, the rod's charge is -10.0nC. How many charged
    10·1 answer
  • A 10-foot ladder is placed against a vertical wall. Suppose that the bottom of the ladder slides away from the wall at a constan
    8·1 answer
  • When is the kinetic energy of the ball zero and when is it at its highest? When is its potential energy at its lowest and at its
    14·1 answer
  • Before a rifle is fired, the linear momentum of the bullet-rifle system is zero.
    13·1 answer
  • In the photo below, astronaut Alan Bean works at the Apollo 12 lander. Describe the horizon and the surface you see. What kind o
    14·1 answer
  • 4 US regions where major aquifers can be found
    11·1 answer
  • When unpolarized light is incident on a sheet of polarizing material with a transmission axis oriented vertically, what percenta
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!