The answer should be 1.6 kilometers.
We will have that the graph that describes the scenario is given by graph B.
Answer:
v_f = 6.92 x 10^(4) m/s
Explanation:
From conservation of energy,
E = (1/2)mv² - GmM/r
Where M is mass of sun
Thus,
E_i = E_f will give;
(1/2)mv_i² - GmM/(r_i) = (1/2)mv_f² - GmM/(r_f)
m will cancel out to give ;
(1/2)v_i² - GM/(r_i) = (1/2)v_f² - GM/(r_f)
Let's make v_f the subject;
v_f = √[(v_i)² + 2MG((1/r_f) - (1/r_i))]
G is Gravitational constant and has a value of 6.67 x 10^(-11) N.m²/kg²
Mass of sun is 1.9891 x 10^(30) kg
v_i = 2.1×10⁴ m/s
r_i = 2.5 × 10^(11) m
r_f = 4.9 × 10^(10) m
Plugging in all these values, we have;
v_f = √[(2.1×10⁴)² + 2(1.9891 x 10^(31)) (6.67 x 10^(-11))((1/(4.9 × 10^(10))) - (1/(2.5 × 10^(11)))] 20.408 e12
v_f = √[(441000000) + 2(1.9891 x 10^(30)) (6.67 x 10^(-11))((16.408 x 10^(-12))]
v_f = √[(441000000) + (435.38 x 10^(7))
v_f = 6.92 x 10^(4) m/s
Control group in a scientific experiment is a group separated from the rest of the experiment, it is where the independent variable being tested cannot influence the results. It isolates the independent variable's effects on the experiment and can helps rule out alternative explanations of the experimental results.