Answer: 0.5334
Explanation:
i got it right on accellus :p
Answer:
(a) Time t = 16.46 sec
(b) Time t =13.466 sec
(c) Deceleration = 
Explanation:
(a) As the train starts from rest its initial velocity u = 0 m/sec
Acceleration 
Final speed v = 80 km/hr

From first equation of motion v =u+at
So 
(b) Now initial speed u = 22.22 m/sec
As finally train comes to rest so final speed v=0 m/sec
Deceleration 
So 
(c) We have given that initial velocity = 80 km/hr = 22.22 m/sec
Final velocity v = 0 m/sec
Time t = 8.30 sec
So acceleration is given by

As acceleration is negative so it is a deceleration
consider the motion along the X-direction
X = horizontal displacement = 80 m
= initial velocity along the x-direction = v Cos60
t = time of travel
using the equation
X =
t
80 = (v Cos60) (t)
t = 160/v eq-1
consider the motion in vertical direction :
Y = vertical displacement = 20 m
= initial velocity in Y-direction = v Sin60
a = acceleration = - 9.8 m/s²
t = time of travel = 160/v
using the equation
Y =
t + (0.5) a t²
20 = (v Sin60) (160/v) + (0.5) (- 9.8) (160/v)²
v = 32.5 m/s
It will land in your lap because there's different frames of motion relative to yourself. For example, if you're running at a speed of 6 mph, it doesn't mean you'll run as fast as the Earth spins. Also, since you're on the interior of the plane, any kind of wind or weather on the outside will not affect the coin. A law to back up this claim is Einsteins Special Law of Relativity.