To solve this problem it is necessary to apply the rules and concepts related to logarithmic operations.
From the definition of logarithm we know that,

In this way for the given example we have that a logarithm with base 10 expressed in the problem can be represented as,

We can express this also as,

By properties of the logarithms we know that the logarithm of a power of a number is equal to the product between the exponent of the power and the logarithm of the number.
So this can be expressed as

Since the definition of the base logarithm 10 of 10 is equal to 1 then

The value of the given logarithm is equal to 6
B. to show that there was conflict between what scientists were observing about the universe and what religion taught them
Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

Answer:
a) Not Accurate
b) Not Accurate
c) Accurate
d) Accurate
Explanation:
Part a
Not Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m
Part b
Not Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m
Part c
Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m by varying the phase difference between two waves she can achieve the desired results.
Part d
Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m by varying the phase difference between two waves she can achieve the desired results.