Answer:
3675 J
Explanation:
Gravitational Potential Energy =
× mass × g × height
( g is the gravitation field strength )
Mass = 50 kg
G = 9.8 N/kg ( this is always the same )
Height = 15 m
Gravitational Potential Energy =
× 50 ×9.8 × 15
= 3675 J
Answer:
A. 
B. 
C. 
Explanation:
The capacitance of a capacitor is its ability to store charges. For parallel-plate capacitors, this ability depends the material between the plates, the common plate area and the plate separation. The relationship is

is the capacitance,
is the common plate area,
is the plate separation and
is the permittivity of the material between the plates.
For air or free space,
is
called the permittivity of free space. In general,
where
is the relative permittivity or dielectric constant of the material between the plates. It is a factor that determines the strength of the material compared to air. In fact, for air or vacuum,
.
The energy stored in a capacitor is the average of the product of its charge and voltage.

Its charge,
, is related to its capacitance by
(this is the electrical definition of capacitance, a ratio of the charge to its voltage; the previous formula is the geometric definition). Substituting this in the formula for
,

A. Substituting for
in
,

B. When the distance is
,


C. When the distance is restored but with a dielectric material of dielectric constant,
, inserted, we have

Well i think the answer is impossible to find because there is no picture
Answer:
The curl is 
Explanation:
Given the vector function

We can calculate the curl using the definition

Thus for the exercise we will have

So we will get

Working with the partial derivatives we get the curl

Answer:
RL=100K → Vo=9.90 mV
RL=10K → Vo=9.09 mV
RL=1K → Vo=5 mV
RL=100 → Vo=909.09 μV
In order to obtain 80% of the power source we have to put a resistor of 4 KOhm.
Explanation:
Here we have a power source in serie with a resistor of 1K and RL, in order to obtain the Vo voltage we have to apply the voltage divider rule, that states:

Substituing the resistor values of RL we obtained the following results:
RL=100K → Vo=9.90 mV
RL=10K → Vo=9.09 mV
RL=1K → Vo=5 mV
RL=100 → Vo=909.09 μV
In order to find the lowest value that gives us 80% of the source voltage we have to use the voltage divider rule again and make the Vo equal to 0.8 Vin:

The result of the last equation is 4000, so in order to obtain 80% of the power source we have to put a resistor of 4 KOhm.