Answer:
density of the ball is 3.33 g/cc
Explanation:
As we know that the density is the ratio of mass and volume
here we know that
mass = 20 g
volume = 6 cubic cm
so we will have



I think D. It starts at (0.0) and goes to the correct points so it makes sense
Answer:
96046 Ns.
Explanation:
We shall represent velocity in vector form considering east direction as + ve x axis and north as + y direction.
40 km/h in the east
V₁ = 40 i
V₂ = 50j
momentum p₁ = mV₁
= 1500 X 40 i
= 60000 i
Momentum p₂ = mV₂
= 1500 X 50j
= 75000 j
Change in momentum
p₂ - p₁
75000j - 60000i
Magnitude of change
= 
= 96046 Ns.
Answer:
When you have to do an English-Metric (SI) length conversion, and you already know the English units of length (miles, yards, feet, inches, etc.), all you need to remember is one simple relationship, and you can readily convert any length in the SI system, to the equivalent length in the other.
1 foot (ft) = 0.3048 meters (m)
BIn this case you need your answer in inches. You (hopefully) know there are 12 inches in a foot, so you just do the following:
1 inch (in) = 1/12 ft = 0.3048/12 m = 0.0254 m
Answer:
Acceleration a ≤ 3 m/s^2
the greatest acceleration that the truck can have without losing its load is 3 m/s^2
Explanation:
For the truck to accelerate without losing its load.
Acceleration force of truck must be less than or equal to the maximum friction force between the truck bed and the load.
Fa ≤ F(friction)
But;
Fa = mass × acceleration
Fa = ma
ma ≤ F(friction)
a ≤ (F(friction))/m ......1
Given;
Fa = mass × acceleration
Fa = ma
mass m = 800 kg
F(friction) = 2400 N
Substituting the given values into equation 1;
a ≤ F(friction)/m
a ≤ 2400N/800kg
a ≤ 3 m/s^2
the greatest acceleration that the truck can have without losing its load is 3 m/s^2